Supporting Informataion

Understanding the Role of Spacer Cation in 2D Layered Halide Perovskites to achieve stable perovskite solar cell

Eti Mahal,[†] Shyama Charan Mandal,[†] Biswarup Pathak,^{†,*}

[†]Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India

*Email: <u>biswarup@iiti.ac.in</u>

Contents

Figure S1: Optimized geometries of (a) (2-PyrEA)PbI₄, (b) (3-PyrEA)PbI₄, (c) (4-PyrEA)PbI₄

Table S1: The detailed structural parameters of 2D-LHPs.

 Table S2: Bond angle and bond lengths of 2D-LHPs.

Figure S2: Structural features of (a) (BA)₂PbI₄, (b)(PEA)₂PbI₄, (c) (2-PyrEA)PbI₄, (d) (3-PyrEA)PbI₄ and (e) (4-PyrEA)PbI₄

Figure S3: Projected density of states of (2-PyrEA)PbI₄, (3-PyrEA)PbI₄ and (4-PyrEA)PbI₄ using HSE06+SOC method

Figure S4: Calculated band structures of (2-PyrEA)PbI₄, (3-PyrEA)PbI₄ and (4-PyrEA)PbI₄ using PBE+SOC method.

Figure S5: Calculated band structures of (BA)₂PbI₄, (3-APN)₂PbI₄ and (PEA)₂PbI₄ using PBE method.

Figure S6: Optimized geometries of (a) (3-APN)₂SnI₄, (b) (3-APN)₂PbBr₄, (c) (3-APN)₂PbCl₄.

Figure S7: Structural features of (a) (3-APN)₂SnI₄, (b) (3-APN)₂PbBr₄, (c) (3-APN)₂PbCl₄.

Table S3: The calculated band gap values of 2D-LHP based systems using PBE and HSE06+SOC functional and compared with the available experimental values.

Figure S8: Projected density of states of (a) (3-APN)₂SnI₄, (b) (3-APN)₂PbBr₄, (c) (3-APN)₂PbCl₄ using HSE06+SOC method.

Figure S9: Calculated band structures of (a) (3-APN)₂SnI₄, (b) (3-APN)₂PbBr₄, (c) (3-APN)₂PbCl₄ using PBE+SOC method.

Table S4: The calculated effective masses of (3-APN)₂SnI₄, (3-APN)₂PbBr₄, (3-APN)₂PbCl₄.

Figure S10: Calculated absorption spectra of (2-PyrEA)PbI₄, (3-PyrEA)PbI₄ and (4-PyrEA)PbI₄ using PBE+SOC method.

Figure S1: Optimized geometries of (a) (2-PyrEA)PbI₄, (b) (3-PyrEA)PbI₄, (c) (4-PyrEA)PbI₄

LHP System	Space	Lattice Parameters						
	group	a (Å)	b (Å)	c (Å)	α	β	γ	
(BA) ₂ PbI ₄	Pbca	8.876	8.693	27.601	90°	90°	90°	
(3-APN) ₂ PbI ₄	Pnma	8.637	9.785	20.346	90°	90°	90°	
(PEA) ₂ PbI ₄	P1	8.739	8.740	32.995	84.65°	84.66°	89.65°	
(PyrEA)PbI ₄	P 21/c	6.335	12.572	19.801	90°	90°	90.76°	
(2-PyrEA)PbI ₄	P 21/n	6.398	12.522	19.959	90°	93.79°	90°	
(3-PyrEA)PbI ₄	P 21/n	6.356	12.469	20.381	90°	96.06°	90°	
(4-PyrEA)PbI ₄	P 21/n	6.351	12.500	20.200	90°	95.35°	90°	
$(3-APN)_2SnI_4$	Pnma	8.724	10.048	21.034	90°	90°	90°	
(3-APN) ₂ PbBr ₄	Pnma	8.071	9.294	22.588	90°	90°	90°	
(3-APN) ₂ PbCl ₄	Pnma	7.670	8.878	18.499	90°	90°	90°	

Table S1	: Space	group	and L	attice	parameters	of 2D-LHPs.
----------	---------	-------	-------	--------	------------	-------------

	M-X bond lengths in Å					X-M-X angle			
LHP System	1(Eq)	2(Eq)	3(Eq)	4(Eq)	5(Ax)	6(Ax)	1	2	3
(BA) ₂ PbI ₄	3.20	3.20	3.21	3.21	3.23	3.23	180.00	179.99	180.00
(3-APN) ₂ PbI ₄	3.35	3.20	3.19	3.34	3.21	3.21	174.40	174.82	170.09
(PEA) ₂ PbI ₄	3.19	3.20	3.19	3.18	3.24	3.87	179.50	179.51	179.34
(PyrEA)PbI ₄	3.20	3.21	3.18	3.18	3.25	3.16	172.72	169.63	167.89
(2-PyrEA)PbI ₄	3.17	3.22	3.28	3.17	3.19	3.23	165.43	174.26	175.48
(3-PyrEA)PbI ₄	3.18	3.19	3.16	3.22	3.20	3.20	168.35	176.86	175.08
(4-PyrEA)PbI ₄	3.16	3.19	3.19	3.22	3.28	3.12	175.99	176.60	173.53
$(3-APN)_2SnI_4$	3.73	3.59	3.00	2.99	3.21	3.21	177.33	175.82	168.61
(3-APN) ₂ PbBr ₄	3.00	3.03	3.17	3.10	3.06	3.06	179.34	178.86	172.45
(3-APN) ₂ PbCl ₄	3.09	3.02	2.82	2.84	2.83	2.83	171.46	173.30	170.86

 Table S2: Bond angle and bond lengths of 2D-LHPs. Where M and X are metal and halides

 respectively.

Figure S2: Structural features of (a) (BA)₂PbI₄, (b)(PEA)₂PbI₄, (c) (2-PyrEA)PbI₄, (d) (3-PyrEA)PbI₄ and (e) (4-PyrEA)PbI₄

Figure S3: Projected density of states of the 2D-LHP systems using HSE06+SOC level of calculations. Here the Fermi level is set to zero.

Figure S4: Calculated band structures of the 2D-LHP systems using PBE+SOC method. Here, high symmetry points are $\Gamma = (0, 0, 0), X = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), A = (0.5, 0.5, 0), B = (0, 0.5, 0.5), C = (0.5, 0, 0.5), and D = (0.5, 0.5, 0.5).$

Figure S5: Calculated band structures of the 2D-LHP systems using PBE method. Here, high symmetry points are $\Gamma = (0, 0, 0), X = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), A= (0.5, 0.5, 0), B= (0, 0.5, 0.5), C= (0.5, 0, 0.5), and D = (0.5, 0.5, 0.5).$

Figure S6: Optimized geometries of (a) (3-APN)₂SnI₄, (b) (3-APN)₂PbBr₄, (c) (3-APN)₂PbCl₄.

Figure S7: Structural features of (a) (3-APN)₂SnI₄, (b (3-APN)₂PbBr₄, and (c) (3-APN)₂PbCl₄.

Table S3: The calculated band gap values of 2D-LHP based systems using PBE and HSE06+SOC functional and compared with the available experimental values.

Layered	Band gap in eV					
Perovskite System	PBE	HSE06+SOC	Expt.			
$(3-APN)_2SnI_4$	1.73	2.65	-			
(3-APN) ₂ PbBr ₄	2.37	2.98	-			
(3-APN) ₂ PbCl ₄	2.83	3.73	-			

Figure S8: Projected density of states of the (3-APN)₂SnI₄, (3-APN)₂PbBr₄, and (3-APN)₂PbCl₄ using HSE06+SOC level of calculations. Here the Fermi level is set to zero.

Figure S9: Calculated band structures of the $(3-APN)_2SnI_4$, $(3-APN)_2PbBr_4$, and $(3-APN)_2PbCl_4$ using PBE+SOC method. Here, high symmetry points are $\Gamma = (0, 0, 0)$, X = (0.5, 0, 0), Y = (0, 0.5, 0), Z = (0, 0, 0.5), A = (0.5, 0.5, 0), B = (0, 0.5, 0.5), C = (0.5, 0, 0.5), and D = (0.5, 0.5, 0.5).

System	Direction	m _e *(m ₀)	m _h *(m ₀)	
(2 ADN) Spl	Г-Х	0.22	0.41	
(5-AFN) ₂ 5 III ₄	Г-Ү	0.95	3.81	
(3-APN) ₂ PbBr ₄	Г-Х	0.19	027	
	Г-Ү	0.22	0.30	
(3-APN) ₂ PbCl ₄	Г-Х	0.32	0.38	
	Г-Ү	0.31	0.31	

Table S4: Effective mass of (3-APN)₂SnI₄, (3-APN)₂PbBr₄, and (3-APN)₂PbCl₄.

Figure S10: Calculated absorption spectra of (2-PyrEA)PbI₄, (3-PyrEA)PbI₄ and (4-PyrEA)PbI₄ using PBE+SOC method.