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1. Machine Learning 

1.1 Learning Algorithms 

Details of the machine learning (ML) algorithms1,2 adopted in this work are described in 

the following along with their associated parameters. In this work, the building, learning, 

and evaluation of random forests (RF), support vector machines (SVM), k-nearest 

neighbors (KNN) were performed using Python with Scikit-learn module,1 while those of 

artificial neural network (ANN) were performed using TensorFlow 2 (version 2.4.1)3 library 

with Keras (version 2.4.0)4 API. To quantify the performance of the trained ML models, 

mean absolute error (MAE) and the root mean square error (RMSE) were calculated. A 

ratio of 0.8 was used to split the datasets into training and test sets.  

Random Forests. The random forests5,6 (RF) algorithm is a powerful algorithm for 

classification and regression and is an ensemble of decision Trees7. The decision tree is 

developed by asking series of questions regarding features, which results in decision 

nodes in the tree. A leaf node is the decision node that does not have any child nodes, 

and the prediction is made based on this node. The classification and regression tree8 

(CART) algorithm embedded in Scikit-Learn1 was used to develop the nodes, where Gini 

impurity and mean square error (MSE) were used as the cost function, respectively, in 

classification and regression tasks. CART searches for the feature and the corresponding 

threshold to produce pure subsets by minimizing impurity (in classification) and MSE (in 

regression). RF can introduce extra randomness since the best split is determined either 

from all input features or a random subset of features during the construction of a tree. In 

this work, the best split was based on the total number of features, and the number of 

trees in the forest was 100.  

Support Vector Machines. Support vector machines9,10 (SVM)  is a supervised 

learning algorithm that is capable of performing linear/nonlinear classification and 

regression tasks. The working principle is that upon the classification of two classes, SVM 

fits a widest street (margins) to separate the two classes. One major hyperparameter is 

the C value that serves as the weighting for the margin violation; hence, SVM with a larger 

C value would possibly lead to overfitting. Through the use of kernels11, SVM is equipped 

with the capability to perform nonlinear classification (and regression). In this scenario, 

more features in higher dimensions are considered, resulting in linear classification in the 
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higher dimensional space. Polynomial and Gaussian radial basis function (RBF) are two 

common kernels in practice. SVM regression10 (SVR) is built based on the concept of 

SVM classification, but in a reverse manner. Instead of fitting the widest street with a 

limited margin violation in classification, SVR fits the widest street to incorporate as many 

data as possible. SVR introduces another hyperparameter, epsilon, that determines the 

width of the street. In this work, a C value of 1 and an epsilon value of 0.1 were used 

along with linear, polynomial, and RBF kernels. Note the results from the linear kernel 

was used because it resulted in the better performance. 

k-Nearest Neighbors. k-nearest neighbors (KNN) algorithm is a supervised 

learning algorithm that can perform classification and regression tasks. KNN assumes 

that similar things are near to each other, so the prediction of a query point is made based 

on the k nearest neighbors. In our settings, 5 nearest neighbors were used for prediction 

and each point in the local neighborhood contributed uniformly to prediction of a query 

point (uniform weights). 

Artificial Neural Networks. Artificial neural network (ANN) is a machine learning model 

inspired by the biological neural networks that power animal brains, firstly introduced by Warren 

McCulloch and Walter Pitts back in 1943.12 ANN is a versatile learning method that can tackle 

highly complex classification and regression tasks. A standard artificial neural network consists 

of an input layer, hidden layers, and an output layer. ANN is called a deep neural network (DNN) 

when a deep stack of hidden layers is packed. In an artificial neutral network for regression, 

the predicted value is calculated based on weights, biases and an activation function 

associated with each neuron and its’ inputs, as illustrated in the equation below:  

                                                 𝑎(ℎ) =  ∅(𝑎(𝑖𝑛)𝑊(ℎ) + 𝑏) 

, where 𝑎(𝑖𝑛) is the feature/input vector of a sample and b is the vector of the bias terms, 

𝑊(ℎ) is the weighting matrix, and ∅ is the activation function to output the activated value 

𝑎(ℎ) for the next layer. Therefore, artificial neutral network is drastically different from 

classic force fields such as Lennard-Jones potential in which energy is calculated through 

a direct summation of contributions from pair-wise interactions between atoms.  

           In this work, five hidden layers were used except as noted in the study of ANN architecture 

(i.e., specifically denoted as DNN in the main text). In neural network models, the number of 

neurons in the first input layer was the number of input features, and one neuron was used in the 

output layer for the prediction. The number of neurons per hidden layer used in this work was 50 
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(resulting in a total of more than 30,000 parameters (e.g., weighting and biasing parameters) in 

our DNN), except in the section regarding the selection of features. The nonlinear or complexity 

nature of ANN is introduced by the activation function, and rectified linear activation function 

(ReLU) was used. The connections between layers are through the connection weights that 

provide a certain representation of the data. The learning process is to train ANN; 

backpropagation13 training algorithm was used along with the Adam14 algorithm (learning rate of 

0.001), implemented in TensorFlow; 1,000 epoch was used in the training process.  

 

1.2 Features  

The feature or descriptor that encodes the atomic structure or configuration can either be 

from the local scope (ex: atom centered symmetry functions15, and smooth overlap of 

atomic positions16) or global scope (ex: Coulomb matrix17), and the pair distance is the 

basic element. In adsorption applications using molecular simulations, the accurate 

description of short-range repulsion, dispersive interaction, and Coulombic interaction is 

important. To this end, we design features aiming to provide these pieces of information 

during the training process.  

Specifically, the dispersion multipole expansion for two ground-state and 

spherically symmetric atoms or molecules, are considered as below.  

                                           𝑈𝑣𝑑𝑤 = −[
𝐶4

𝑟𝑖𝑗
4 +

𝐶6

𝑟𝑖𝑗
6 +

𝐶8

𝑟𝑖𝑗
8 +

𝐶10

𝑟𝑖𝑗
10 …]                                      (1) 

, where 𝐶4 is associated with interactions of the back-to-back quadrupoles, 𝐶6 is related 

with the interaction between two instantaneous dipoles, 𝐶8 is regarding the interaction 

between a quadrupole and a dipole, and 𝐶10  includes the interactions between an 

octopole and a dipole and between two quadrupoles;18,19 rij is the distance between atoms 

i and j. Regarding the Coulombic interaction, it is considered as below  

                                                           𝑈𝐶𝑜𝑢𝑙 =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
                                                      (2) 

, where qi and qj are the atomic charges of atoms i and j, and εo is the permittivity of free 

space. In terms of repulsion interaction where the overlap of electronic wavefunction 

becomes significant, the valance repulsion dominates. Since electronic wavefunctions 
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decay exponentially as a function of distance, such repulsion interactions are well 

represented by the exponential form.18,20 Therefore, the Born-Mayer21 expression as 

below was used to provide ML algorithms with repulsion information. 

                                                         𝑈𝑟𝑒𝑝 = ∑ 𝐴 𝑒−𝑏𝑟𝑖𝑗                                                       (3) 

, where coefficient A and b are repulsive parameters.  

Overall, the aforementioned terms (i.e., 𝑒−𝑟𝑖𝑗 , 𝑟𝑖𝑗
−1, 𝑟𝑖𝑗

−4, 𝑟𝑖𝑗
−6, 𝑟𝑖𝑗

−8, 𝑟𝑖𝑗
−10) were adopted 

to provide ML algorithms with insights into adsorbate-adsorbent interactions. Also, N pairs 

of the smallest distances in each adsorbate-adsorbent atom pair were used to represent 

the environment of each adsorption configuration as depicted in Fig. 1 of the main text; 

N=4 was used and the influence of N was also discussed in the main text. Note that 

although the incorporation of more terms and more pair distances could possibly offer a 

more accurate description, it is prone to overfitting given the rather limited size of DFT 

training data. The impact of the feature selection was also studied and discussed in the 

main text. The min-max normalization was used for better training. 

           For the adsorbate-adsorbent atomic pairs, we considered the pairs between each 

element type of the adsorbate and each atom type of the adsorbent; for the latter, we 

differentiated Oa, Ob, Oc from O atom and Ca, Cb, Cc, Cd from C atoms of Mg-MOF-74 

due to different chemistry exhibited.20,22 This leads to a total of 9 different atom types for 

Mg-MOF-74 (i.e., Mg, Oa, Ob, Oc, Ca, Cb, Cc, Cd, H). Using H2O as an example for our 

implementation, there are two distinct types of elements (i.e., H atoms (H1 and H2) and 

one O atom), so pairs of H (H2O) and different atom types of adsorbent (H-adsorbent, 

i.e., H1 and H2 are not distinguished) and pairs of O(H2O) and different atom types of 

adsorbent (O-adsorbent) were adopted as features. This leads to a total of 2x9=18 pairs. 

For each pair, as noted above, per the adsorption configuration, we determined the N 

shortest distances for each pair, and N is generally assigned as 4 unless otherwise noted.  

Note that we found such an approach (i.e., considering the element type for the 

adsorbate) can yield better results as compared to treating two hydrogens separately. 

Specifically, testing models were built using four kinds of feature designs. The first feature 

set includes all the atomic pairs, i.e., H1- adsorbent, H2-adsorbent, and O-adsorbent. The 

second feature set considers the element pairs (O-adsorbent and H-adsorbent as 
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mentioned above). The third feature set specifies the H atom that is closest to a Mg of 

MOF as H1 and the other as H2, and then considers all the atomic pairs. The fourth 

feature set is similar to the third one except H1 is the closest H atom to MOF. The four 

feature designs are summarized in Table S1 as well as the corresponding MAE values of 

the test set; feature 2 (the adopted approach) exhibits a smaller value. 

 

Table S1. Test of feature adoption upon H2O adsorption in Mg-MOF-74 with the 
corresponding MAE of the test set. Note H1, H2, and O are the two H atoms and the O 
atom of H2O, respectively. 

 adsorbate-adsorbent atomic pairs MAE of test set (kJ/mol) 

Feature 1 H1-adsorbent, H2-adsorbent, O-adsorbent 5.27 

Feature 2 H-adsorbent, O-adsorbent 4.37 

Feature 3 
H1 (closest to Mg) -adsorbent, 

H2-adsorbent, O-adsorbent 
5.01 

Feature 4 
H1 (closest to framework) -adsorbent, 

H2-adsorbent, O-adsorbent 
5.54 

  

 

2 Monte Carlo Simulations 

To generate training data points for the evaluation of potential ML algorithms as well as 

to generate results for the comparison of ML predicted energy with existing force filed 

approaches (UFF23, Lin et al.20, and scaling factor24), Monte Carlo (MC) simulations were 

performed using the open-source RASPA code25, via various MC attempts of random 

translation, rotation, and reinsertion moves. The dimension of the simulation boxes in all 

the MC simulations was at least twice the cutoff radius (12Å) along each direction. The 

TraPPE force field was adopted for CO2
26, while H2O was modelled using the four-site 

TIP4P-Ew model27. CO molecule was described using models proposed by Lin and co-

worker (i.e., the so-called ESP-MMs).28 Regarding using MC to generate the training data 

set for evaluation upon CO2 and H2O adsorption, Buckingham potential was used with 

force field parameters taken from the work of Lin et al.20  to describe the dispersive 

interactions between adsorbates and the framework; these results were also used for 
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comparison purpose. In comparison with results from UFF force field23 and the scaling 

factor approach by Sholl and co-workers24,29,30, 6-12 Lennard-Jones (L-J) potential was 

used. The Lorentz-Berthelot mixing rule was used. Coulombic potential was used to 

describe electrostatic interactions and the Ewald approach31 was used to compute the 

long-range electrostatic interactions. The structure, force-fields parameters, and atomic 

charges of the framework atoms were taken from a previous work20 except that the 

framework of Mg-MOF74 in CO adsorption was relaxed by the DFT method in this work. 

Note that even though the relaxed structure of Mg-MOF74 in CO adsorption is slightly 

different from that in the other two cases, it should not affect the corresponding ML results 

in each CO2, H2O, and CO adsorption case, since the comparison is among different force 

fields methods (i.e. DNN, UFF23, Lin et al.20, and scaling factor24) in each case.  

The Widom particle insertion method32 was used to compute the Henry coefficients 

of adsorption (i.e., initial isotherm slope at an infinite dilution condition). The Henry 

coefficient of adsorption (KH) was derived based on the ratio of the average Rosenbluth 

weights of the adsorbate in the framework, 〈𝑊〉, and that in the gas phase, 〈𝑊𝑖𝑔〉, as 

                                                 𝐾𝐻 =
1

𝜌𝑓𝑅𝑇

〈𝑊〉

〈𝑊𝑖𝑔 〉
                                                      (3) 

, where  𝜌𝑓  the mass density of the framework, R is the gas constant, and T is the 

temperature. 〈𝑊〉  can further reduce to the average of the Boltzmann factor 

〈exp (−∆𝑈
𝑅𝑇⁄ )〉 , where ∆𝑈  is the predicted adsorbate-adsorbent interaction of the 

inserted ghost molecule. In calculating KH through ML force fields, interaction energies for 

millions of randomly generated configurations were calculated using equation (3) for the 

estimation of KH values.  

 

3 Density functional theory calculations for CO adsorption 

We performed fully periodic density functional theory (DFT) calculations to study the 

adsorption of carbon monoxide (CO) in Mg-MOF-74 with a planewave basis set, using 

the Vienna Ab initio Simulation Package (VASP)33–36. All calculations were performed 

using Projector augmented wave pseudopotentials37,38 and Perdew, Burke, and 

Ernzerhof (PBE) generalized gradient approximation (GGA)39. To account for the 

dispersion interactions which are important during the adsorption, the third version of 
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dispersion correction of Grimme et al. (D3)40 was used in all calculations. The calculations 

were done using the planewave basis set energy cutoff of 1,000 eV with Brillouin zone 

sampling done at the Γ-point, with structures relaxed until the interionic forces were less 

than 0.01 eV/Å.  

Beginning from the previously published structures41 we first optimized a trigonal 

unit cell of 162 atoms using the PBE-D3+U approach. The computed lattice volumes were 

within 1.5% of the neutron power diffraction data published previously42. We then 

performed static calculations to compute the binding energy of randomly generated CO 

molecule configurations in the Mg-MOF-74 framework. These calculations were 

performed for a single molecule adsorption of CO at 2,000 randomly generated 

coordinates at the distance of 2.0-5.5 Å from the MOF. The interaction energy at each 

randomly generated CO location was calculated as  

                                                 ∆𝐸 =  𝐸𝐶𝑂+𝑀𝑂𝐹 − 𝐸𝑀𝑂𝐹 − 𝐸𝐶𝑂                                                       (4) 

Where ECO +MOF, EMOF, and ECO are the energy of the adsorbed phase, the energy of the 

bare MOF (adsorbent), and the energy of the adsorbate (CO) in gas phase, respectively. 

Here, a negative ΔE corresponds to an exothermic adsorption.  
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Fig. S1 Boxplots to show the energy distribution of datasets generated from NVT MC at 

temperatures of 300, 800, and 8,000 K for (a) CO2 and (b) H2O adsorption in Mg-MOF-

74. Red diamond and blue line indicate the mean and median values, respectively 
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Fig. S2 Calculated Henry coefficients of CO2 adsorption in Mg-MOF-74 using (a) DNN, 

(c) RF, (e) KNN, and (g) SVM algorithms. Likewise, (b, d, f, h) results of employing the 

respective algorithms for H2O adsorption. The datasets from NVT MC at temperatures of 

300, 800, and 8,000 K were used. Note values that are absent in the figures are poor 

predictions with values that are outside of the displayed range.   
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Fig. S3 Parity plots of the interaction energy computed by models employing (a) DNN 

(9.21, 2.04), (b) RF (52.38, 19.15), (c) KNN (53.65, 20.26), and (d) SVM (16.70, 5.50), 

trained with 2,400 points and that computed by the Lin et al.20 force field for 0.4 M unseen 

random configurations for CO2 adsorbed in Mg-MOF-74. The energies computed by the 

aforementioned force field were used for training and testing. The values in the 

parenthesis are the RMSE and MAE, respectively, of the predicted energies w.r.t. to the 

reference energies. Note the dataset for DNN is from NVT MC at temperatures of 8,000 

K, and those for RF, SVM, and KNN are from NVT MC at temperatures of 800 K based 

on the best fitting of each algorithm shown in Fig. S2. The color bar represents the 

shortest distance (Å) between CO2 and the framework. 
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Fig. S4 Parity plots of the interaction energy computed by models employing (a) DNN 

(4.97, 1.32), (b) RF (28.33, 10.00), (c) KNN (28.52, 10.45), and (d) SVM (10.21, 4.09),  

trained with 2,400 points and that computed by the Lin et al.20 force field for 0.4M unseen 

random configurations for H2O adsorbed in Mg-MOF-74. The energies computed by the 

aforementioned force field were used for training and testing. The values in the 

parenthesis are the RMSE and MAE, respective, of the predicted energies w.r.t. to the 

reference energies. Note the dataset for DNN is from NVT MC at temperatures of 8,000 

K, and those for RF, SVM, and KNN are from NVT MC at temperatures of 800 K based 

on the best fitting of each algorithm shown in Fig. S2. The color bar represents the 

distance (Å) between H2O and the framework. 
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Fig. S5 Histogram of the shortest distance between the adsorbate and the MOF for 

configurations in the whole data sets of (a)CO2, (b) H2O, and (c) CO. Note that the 

configurations of CO2 and H2O adsorption used for DFT-derived DNN models were taken 

from the work of Lin et al.20 In H2O adsorption, there are 1,000 H2O configurations located 

near the open metal sites and 2,000 H2O configurations in the accessible pore volume. 

In CO2 adsorption, there are 1,200 CO2 random configurations inside the accessible pore 

volume of Mg-MOF-74. Regarding CO adsorption, a total of 2,000 CO adsorption 

configurations are in the distance of 2.0 ~ 5.5 Å from the framework.  
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Fig. S6 The interaction energies for adsorption configurations (test sets) of (a, b) 

CO2, (c, d) H2O, and (e, f) CO in Mg-MOF-74 computed by (left) DFT and (right) 

the developed DNN force field of this study, UFF, the force field reported by Lin et 

al.20 or the parameterized potential using the scaling factor as a function of the 

shortest distance between the adsorbate and the adsorbent. 
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Fig. S7 Absolute energy difference between the DNN-predicted energies and the DFT 

reference data as a function of the shortest distance between H2O and MOF upon 

different adopted features. Note the DNN of 5HL50 with the smallest four pair-distances 

are used in each feature entity. Results are based on 100 different trained NN models for 

each feature set. Configurations of interaction energies less than 10 kJ/mol were included 

in the calculations of RMSE.  
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