Aluminum sheet induced zinc oxide nanosheets decorated with silver nanoparticles for ultrasensitive SERS sensing of crystal violet

Xuejuan Chen, Qiuli Wang, Lixia Qin*, Xiaoxia Liu, Shi-Zhao Kang, Taiyang Zhang,

Xiangqing Li*

School of Chemical and Environmental Engineering, Center of Graphene Research,

Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China

*Xiangqing Li. Tel.: +86 21 60873061; Fax: +86 21 64253317

xqli@sit.edu.cn (Xiangqing Li); lxqin@sit.edu.cn (Lixia Qin)

Fig. S1 Pore diameter distribution of Al/ZnO.

Fig. S2 (A \sim D): SEM images of Al/ZnO/Ag at other reduction times (5, 10, 20 and 30 min).

Fig. S3 (a) Energy-filtered SEM image of the Al/ZnO/Ag; Elemental distribution of Zn (B), O (C) and Ag (D); and the overlay distribution of elements (E).

Fig. S4 EDX analysis of the Al/ZnO/Ag.

Fig. S5 The structure of CV.

In addition, the analytical enhancement factor (AEF) of the substrate can be estimated according to the peak at 1609 cm⁻¹ by the following formula: ¹

 $AEF = (I_{SERS}/C_{SERS})/(I_{RS}/C_{RS})$

Where I_{SERS} is the SERS intensity of CV at the concentration of C_{SERS} (1 × 10⁻⁷ mol·L⁻¹) on the Al/ZnO/Ag substrate. I_{RS} is the Raman intensity of the CV at the concentration of C_{RS} (1 × 10⁻³ mol·L⁻¹) on Al sheet. Thus, the AEF is estimated as 2.45 × 10⁸ for the Al/ZnO/Ag.

Materials	Analyte	LOD	EF	
Cellophane/Ag ²	CV	$1 \times 10^{-9} \text{mol} \cdot \text{L}^{-1}$	2.0×10^{5}	
Paper-based Au/AgNP ³	CV	$8.1 imes 10^{-8} mol \cdot L^{-1}$	-	
Ag/CdS ⁴	CV	$1\times 10^{\text{-}12}\text{mol}{\cdot}\text{L}{^\text{-}1}$	1.0×10^{7}	
Au@Ag-frustum arrays ⁵	CV	$1\times 10^{10}\text{mol}{\cdot}\text{L}^{1}$	2.67 ×10 ⁷	
This work	CV	$3.6 \times 10^{-14} mol \cdot L^{-1}$	2.45×10^{8}	

Table S1 The comparison of SERS performance toward CV on various substrates.

Fig. S6 (A) SERS spectra of the CV $(1 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1})$ on the same Al/ZnO/Ag substrate for 6 cycles and (B) the line chart of SERS intensity at 1609 cm⁻¹ with cycle.

REFERENCES

- 1 S. Mondal, C. Subramaniam, ACS Sustainable Chem. Eng., 2020, 8, 7639-7648.
- 2 R. Mei, Y. Wang, Q. Yu, Y. Yin, R. Zhao, L. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 2059-2066.
- 3 W. X. Wei, Q. L. Huang, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2018, 193, 8-13.
- 4 G. H. Yang, X. J. Fang, Q. Jia, H. X. Gu, Y. P. Li, C. Q. Han, L. L. Qu, *Microchim. Acta*, 2020, **187**, 310-319.
- 5 S. S. Li, Q. Wang, X. Y. Song, Y. X. Bu, CrystEngComm, 2019, 21, 3709-3720.