Supplementary Material

Giant valley splitting in the MoTe₂/MnSe₂ van der Waals heterostructure

with room-temperature ferromagnetism

Qianze Li,^{a,b} Cai-xin Zhang, ^b Dan Wang,^c Ke-Qiu Chen^b and Li-Ming Tang^{*b}

a) School of Educational Sciences, Hunan First Normal University, Changsha 410205,

China

b) Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China (*E-mail*: <u>lmtang@hnu.edu.cn</u>)

c) Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410018, China

1. Band structure and spin-polarized density of states of monolayer MnSe₂.

Fig. S1 shows the band structure and spin-polarized density of states (DOS) of MnSe₂. The asymmetry of the spin-up and spin-down states indicates that it is the ferromagnetic, and the fermi-level crosses the conduction bands, thus the MnSe₂ monolayer is a ferromagnetic metal. It is found that the total magnetic moments for per unit cell is $3.25 \ \mu_B$, and the magnetic moments of each Mn and Se atoms are 3.99 and $-0.37 \ \mu_B$, respectively, so the Mn and Se are antiferromagnetic coupled. The bands near Fermi level are almost composed by Mn-*d* orbitals and Se-*p* orbitals, and the conduction band edge at K/K' valleys is mainly composed of Mn- d_{xz} and Se- p_z .

Fig. S1. Band structure and spin- polarized density of states of monolayer MnSe₂

2. Comparison of valley splitting and Curie temperature of the MoTe₂/MnSe₂ van der Waals heterostructure with other typical heterostructures.

TABLE S1. Comparison of intrinsic Curie temperature (K) and size of valley splitting (meV) of the MoTe₂/MnSe₂ heterobilayer with several typical heterostructures reported by Refs.

Systems	Curie temperature (K)	Valley splitting (meV)	
MoTe ₂ /EuO [Ref. 16]	69	44	
WS ₂ /MnO(111) [Ref. 18]	118	214	
MoS ₂ /CoO(111) [Ref. 40]	298	103	
WSe ₂ /CrI ₃ [Refs. 20, 21]	45	3	
MoS ₂ /h-VN [Ref. 23]	768	376	
MoS ₂ /Cr ₂ O ₃ [Ref. 41]	307	24	
MoTe ₂ /NiCl ₂ [Ref. 22]	120	32	
WSe ₂ /CrSnSe ₃ [Ref. 42]	73 9		
MoTe ₂ /MnSe ₂	266	116	

3. Interfacial charge transfer in MoTe₂/MnSe₂ vdW heterostructure in six stackings.

As shown in Fig. S2, since the electronegativity of Se is larger than that of Te, the interlayer charge transfer is from the monolayer MoTe₂ to the MnSe₂ layer in the heterobilayer. Noted that although the MnSe₂ is a ferromagnetic metal, it forms a vdW heterostructure with the monolayers MoTe₂, so the charge transfer between the layers is a kind of spacial charge transfer rather than a chemical bond transfer, so the charge transfer between layers is not strong.

Fig. S2. Interfacial charge transfer and charge redistribution of MoTe₂/MnSe₂ in six stackings. The isovalue chosen to plot the isosurfaces is 0.0004 eÅ⁻³. Losses and gains of electrons are colored aqua and pink, respectively.

4. Modulations of Curie temperature of monolayer MnSe₂.

The Curie temperature of ferromagnetic system is realized in open-source mcsolver,¹ and which is based on classical Ising model and Wolf algorithm to accurately describe the equilibrium magnetic system at various temperatures. In the calculations, 80000 iterations were used at each temperature to fully thermalize the system to reach equilibrium, and the output results were calculated from 640000 iterations after thermal equilibrium. In the Monte Carlo (MC) simulations, we use a (32×32) super cell to reduce the periodic constraints. The exchange parameter (*J*) was defined as $J = (E_{FM} - E_{AFM})/4N\mu_{unit}^2$, where E_{FM} and E_{AFM} are the total energy of the

ground state of ferromagnetic (FM) and antiferromagnetic (AFM) respectively, *N* is the number of Mn atoms in the supercell, and μ_{unit} is the magnetic moment of the primary cell. The exchange energy of per unit cell is $E_{ex} = (E_{FM}-E_{AFM})/N$. The total energy of monolayer MnSe₂ was obtained by DFT calculations with (2x2) supercell, and the exchange parameter is -2.63 meV at zero strain. The magnetic moment direction of the two Mn atoms in the supercell is reversed as an antiferromagnetic system. TABLE S1 lists the calculated Curie temperature (Tc) for MnSe₂ under different biaxial strains. Fig. S3 shows the corresponding magnetic moment (red) and heat capacity (blue) of MnSe₂ changes with the temperature under several different biaxial strains.

TABLE S2. Calculated total energy of AFM state (E_{AFM}) and FM state (E_{FM}), exchange energy per unit cell (E_{ex}), exchange parameter (J), and Curie temperature (T_c) for MnSe₂.

Strains	$E_{\rm FM}({ m eV})$	$E_{\rm AFM}({\rm eV})$	<i>E_{ex}</i> (meV)	J(meV)	T _c (K)
-5%	-60.50	-60.37	-32.11	-0.89	86
-4%	-60.60	-60.41	-46.81	-1.30	125
-3%	-60.67	-60.44	-57.85	-1.61	154
-2%	-60.73	-60.45	-69.33	-1.93	184
-1%	-60.77	-60.44	-83.75	-2.33	222
0	-60.80	-60.40	-99.88	-2.63	266
1%	-60.80	-60.34	-115.31	-3.20	306
2%	-60.78	-60.27	-129.06	-3.58	342
2.3%	-60.77	-60.24	-132.94	-3.69	353
3%	-60.74	-60.17	-141.64	-3.93	377
4%	-60.68	-60.07	154.04	-4.27	409
5%	-60.61	-59.95	-166.2	-4.62	443

Fig. S3. The magnetic moment (red) and heat capacity (blue) changes with the temperature under (a) -3% biaxial compressive strains, (b) 0% strains, (c) 2.3% biaxial tensile strains, and (d) 5% biaxial tensile strains, respectively.

Reference

[1] L. Liu, X. Zhang, https://github.com/golddoushi/mcsolver.