Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Hierarchically porous 2D carbon from bio-waste: A sustainable, rapid and efficient oxidase mimic for colorimetric detection of ascorbic acid

Chandra Jeet Verma¹, Priya Singh¹, Ravi Prakash Ojha¹ and Rajiv Prakash^{*}

School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi-221005, U.P. India.

*Corresponding authors email: rprakash.mst@iitbhu.ac.in

¹All authors have equally contributed to this work.

Fig.S1.SEM image of 2D carbon (a) at 5µm scale, (b) at 1µm Scale

Fig S2. XPS study of 2Dcarbon (a) XPS survey spectrum, (b) Deconvoluted XPS spectra for C, (b) O, (c) N respectively. (Note-Here, ITO was used as substrate for XPS measurement, for which the peak appeared around (~450 eV) due to Indium element (In 3d)).

Fig.S3. (a) HR TEM image of 2D carbon at 10nm scale, (b) Enlarged image, (c) Interlayer d-Spacing

S. No.	Catalyst	Substrate	Km (mM)	Vmax (MS ⁻¹)	Reference
1	2D carbon	ТМВ	0.122	5.3 x 10 ⁻⁶	This work
2	C-dots	ТМВ	0.039	3.61 x 10 ⁻⁸	1
3	HRP	TMB	0.434	10 x 10 ⁻⁸	2
4	N-GQDs	TMB	11.19	0.38 x 10 ⁻⁸	3
5	Graphene- AuNPs	TMB	0.38	18.30 x 10 ⁻⁸	4

Table S1: Comparison of catalytic property of 2D carbon with other nanozymes.

Table S2. Comparison table for the 2D carbon with other nanozymes.

Material used	Method	LOD	Linear range	Reference
2D carbon	Colorimetry	0.26μΜ	1- 70 μM	This work
AuNPs	Colorimetry	0.3 μΜ	1-15 μM	5
Cu/Ag/rGO	Colorimetry	3.6µM	1-30µM	6
MIL-68/MIL-100	Colorimetry	6μΜ	30-485µM	7
CuCo ₂ O ₄	Colorimetry	0.57µM	1.00-10.00	8
Microspheres			μΜ	
AgFKZSiW ₁₂ /PPy	Colorimetry	2.7 μM	1 to 80 μM	9
CuFKZP ₂ W ₁₈ /PPy	Colorimetry	0.627	5–100μΜ	10
(15%)		μΜ		

References:

1. W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng and Y. Huang, Carbon nanodots as peroxidase mimetics and their applications to glucose detection. *ChemComm* (Camb), 2011, **47**, 6695–7.

2. Q. Chen, M. Liu, J. Zhao, X. Peng, X. Chen, N. Mi, B. Yin, H. Li, Y. Zhang and S. Tao, Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose, *ChemComm.*, 2014, **50**, 6771–6774.

3. L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Wang, Y. Jiang and X. Chen, Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H₂O₂ and glucose *Anal. Chim. Acta.*, 2015, **869**, 89-95.

4. X. Chen, X. Tian, B. Su, Z. Huang, X. Chen and M. Oyama, Au nanoparticles on citratefunctionalized graphene nanosheets with a high peroxidase like performance, *Dalton trans.*, 2014, **43**, 7449-7454.

5. L.P. Zhang, B. Hu, and J.H. Wang, Label-free colorimetric sensing of ascorbic acid based on Fenton reaction withunmodified gold nanoparticle probes and multiple molecular logic gates, *Anal. Chim. Acta*, 2012, **717**, 127–133.

6. G. Darabdhara, B. Sharma, M.R. Das, R. Boukherroub, S. Szunerits, Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection, *Sens. Actuators B: chem.*, 2017, **238**, 842–851.

7. J.W. Zhang, H. T. Zhang, Z. Y. Du, X. Wang, S. H. Yu and H.L. Jiang, Water-stable metalorganic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform, *ChemComm*, 2014, **50**, 1092—1094.

8. S. Han, X. Chen, Y. Fan, Y. Zhang, Z.D. Yang, X. Kong, Z. Liu, Q. Liu and X. Zhang, The excellent peroxidase-like activity of uniform CuCo₂O₄ microspheres with oxygen vacancy for fast sensing of hydrogen peroxide and ascorbic acid, *New J. Chem.*, 2021,**45**, 2030-2037.

9. X. Li, L. Sun, X.Yang, K. Zhou, G. Zhang, Z. Tong, C. Wang and J. Sha, Enhancing the colorimetric detection of H₂O₂ and ascorbic acid on polypyrrole coated fluconazole functionalized POMOFs" *Analyst*, 2019,**144**, 3347-3356.

10. Q. Li, M. Xu, X. Li,S. Li, L. Hou, Y. Chen and J. Sha, A polypyrrole-coated eightfold-helical Wells–Dawson POM-based Cu-FKZ framework for enhanced colorimetric sensing, *Analyst*, 2020, 145, 4021–4030.