Supporting Information

Synthesis of AlI₃-doped Li₂S Positive Electrode with Superior Preformance in All-Solid-State Battery

H. Gamo^a, T. Maeda^a, K. Hikima^a, M. Deguchi^c, Y. Fujita^c, Y. Kawasaki^c, A. Sakuda^c, H. Muto^{a, b}, Nguyen H. H. Phuc^{* a}, A. Hayashi^c, M. Tatsumisago^c, A. Matsuda^{* a}

^aDepartment of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
^bInstitute of Liberal Arts and Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
^cDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
* Corresponding authors: matsuda@ee.tut.ac.jp (A. Matsuda), nhhphuc@hcmut.edu.vn (Nguyen H. H. Phuc)

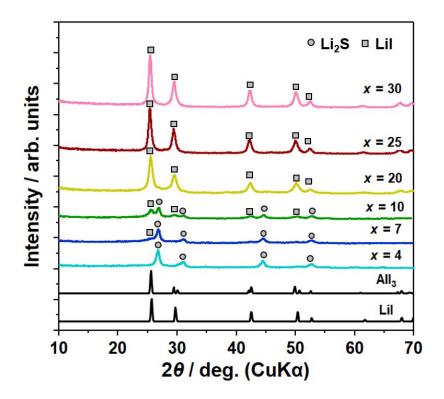


Fig. S1. X-ray diffraction patterns of $(100 - x)Li_2S \cdot xAlI_3$ samples.

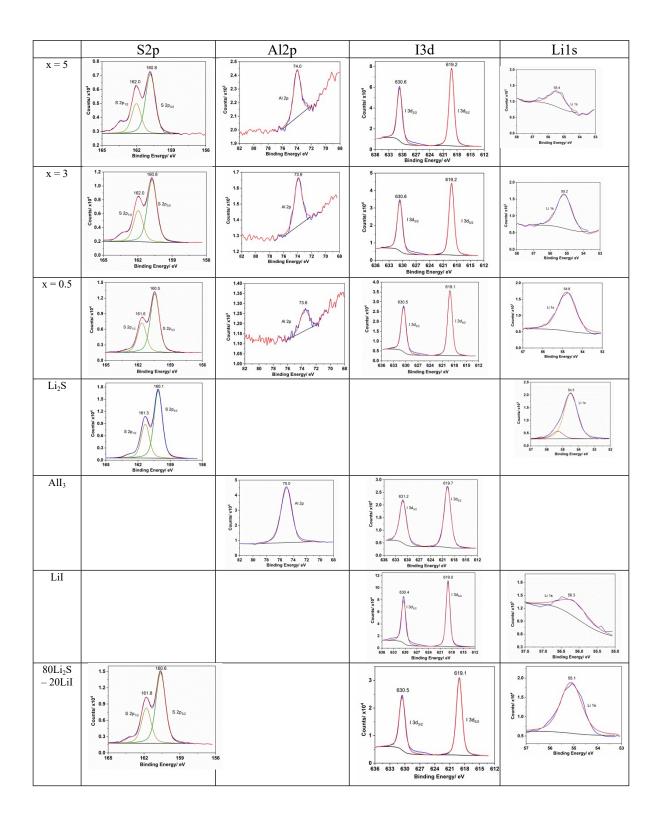


Fig. S2. X-ray photoelectron spectroscopy spectra of the prepared samples and standard materials.

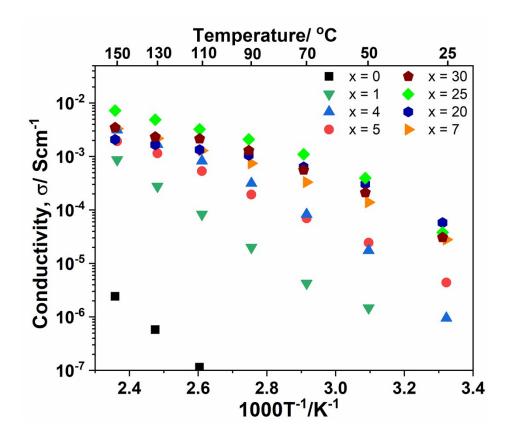


Fig. S3. Temperature dependence of ionic conductivity of $(100 - x)Li_2S \cdot xAII_3$.

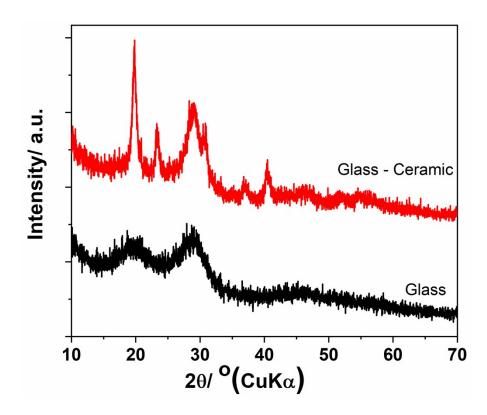


Fig. S4. X-ray diffraction patterns of $Li_{10}P_3S_{12}I$ solid electrolytes.

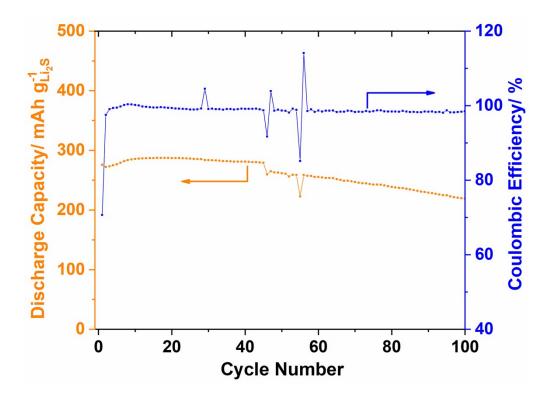


Fig. S5. Cyclic property at room temperature of the all-solid-state Li–S cell employing 80(95Li₂S·5AlI₃)–20Ketjen Black (KB) composite as the positive electrode composite (without Li₁₀P₃S₁₂I solid electrolyte in the positive electrode).

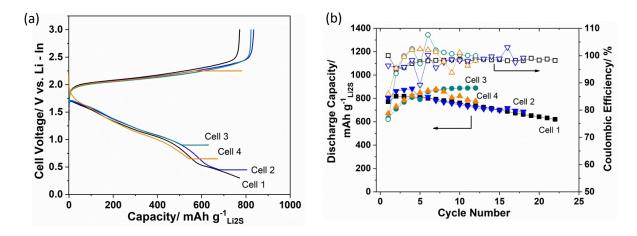


Fig. S6. Performances of four cells with different cut-off voltages. (a) charge–discharge curves at the first cycle; (b) cyclic properties of the cells.

• Cell construction:

Positive electrode: $50(97\text{Li}_2\text{S}\cdot3\text{AlI}_3)-40\text{Li}_{10}\text{P}_3\text{S}_{12}\text{I}-10\text{Ketjen Black (KB)}$, ~4 mg Separator: $\text{Li}_{10}\text{P}_3\text{S}_{12}\text{I}$, ~80 mg Negative electrode: In–Li alloy

• Charge–discharge conditions:

For the first cycle:

Cell 1: CC mode, 0.1C (about 0.25 mA cm⁻²), cut-off voltage 3.0-0.3 V vs. Li-In

Cell 2: charge with CC mode (0.1C), cut-off voltage 3.0 V vs. Li–In discharge with CC–CV mode: 0.1C with CC mode until 0.45 V vs. Li–In, then change to CV mode at 0.45 V until the current reaches 0.01 mA

Cell 3: charge with CC mode (0.1C), cut-off voltage 3.0 V vs. Li–In discharge with CC–CV mode: 0.1C with CC mode until 0.90 V vs. Li–In, then change to CV mode at 0.90 V until the current reaches 0.01 mA

Cell 4: charge with CC–CV mode: 0.1C with CC mode to 2.25 V vs. Li–In, then change to CV mode at 2.25 V until the current reaches 0.01 mA discharge with CC–CV mode: 0.1C with CC mode until 0.65 V vs. Li–In, then change to CV mode at 0.65 V until the current reaches 0.01 mA

<u>From the second cycle</u>: The discharge modes were maintained as previously described; the charge mode was changed to 0.1C with CC mode to 2.25 V vs. Li–In, then change to CV mode at 2.25 V until the current reaches 0.01 mA