Electronic Supplementary Information for

Searching Better X-Ray and γ-Ray Photodetector: Structure-Composition Properties in the TIPb₂Br_{5-x}l_x Quaternary System

M. Piasecki, ^{a,b,*} O. V. Parasyuk, ^c V. Pavlyuk, ^{a,d} O. Y. Khyzhun, ^e I. V. Kityk, ^{f,g} G. L. Myronchuk, ^g K. T. Wojciechowski, ^h S. I. Levkovets, ^c L. V. Piskach, ^c A. O. Fedorchuk, ⁱ P. M. Fochuk, ^j V. Wood, ^k and M. Yarema ^{k,*}

^a J.Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa, Poland

^b Inorganic Chemistry Department, Uzhhorod National University, 46 Pidhirna, Uzhhorod, Ukraine

^c Department of Inorganic and Physical Chemistry, Eastern European National University, Voli Ave. 13, Lutsk, Ukraine

^d Department of Inorganic Chemistry, Ivan Franko National University, Kyryla i Mefodiya Str. 6, Lviv, Ukraine

^e Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., Kyiv, Ukraine

^f Electrical Engineering Department, Czestochowa University Technology, Armii Krajowej 17, Czestochowa, Poland

^g Department of Experimental Physics and Information-Measuring Technology, Lesya Ukrainka Eastern European National University, 13 Voli Avenue, Lutsk, Ukraine

^h Thermoelectric Research Laboratory, Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Avenue, Krakow, Poland

ⁱ Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St. 50, Lviv, Ukraine

^j Yuriy Fed'kovych Chernivtsi National University, 2 Kotziubynskoho St., Chernivtsi, Ukraine

^k Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, Zurich, Switzerland

Corresponding authors: m.piasecki@ujd.edu.pl; yaremam@ethz.ch

Compound	Density, g/cm ³	Band gap, eV	$\mu au_{ m e}$, cm²/V	$\mu \tau_{\rm h}$, cm ² /V
CZT	5.78	1.57	4.5·10 ⁻²	1.10^{-4}
TlBr	7.56	2.68	5·10 ⁻³	1.10^{-4}
Pbl ₂	6.2	2.32	8·10 ⁻⁶	9·10 ⁻⁷
Hgl ₂	6.4	2.15	8·10 ⁻⁴	3·10 ⁻⁵
PbGa ₂ Se ₄	6.04	2.3	1·10 ⁻⁶	-
TlGaSe₂	6.4	1.93	6·10 ⁻⁵	9.2·10 ⁻⁶
$Cs_2Hg_6S_7$	6.94	1.63	1.2·10 ⁻³	1.0.10-4
CsHgInS₃	5.16	2.30	3.6·10 ⁻⁵	2.9·10 ⁻⁵
Tl₅Sel₄	7.38	1.86	7·10 ⁻³	6·10 ⁻⁴
Tl ₆ Sl ₄	7.25	2.03	2.1·10 ⁻³	2.3·10 ⁻⁵
CsPbCl₃	4.24	2.86	1.0.10-4	9.01·10 ⁻⁵
CsPbBr₃	4.86	2.25	1.7·10 ⁻³	1.3·10 ⁻³
Tl₄CdI ₆	6.88	2.83	6.05·10 ⁻⁴	1.0·10 ⁻⁴

Table S2. List of ternary and quaternary samples, used to study quasi-binary $TIPb_2Br_5$ -' $TIPb_2I_5$ ' phase diagram.

Nominal composition	mol.% of TIPb ₂ Br ₅	mol.% of 'TIPb ₂ I ₅ '	Phase
TIPb ₂ Br ₅	100	0	Monoclinic TIPb ₂ Br ₅
TIPb ₂ Br _{4.75} I _{0.25}	95	5	Monoclinic TlPb ₂ Br ₅
$TIPb_2Br_{4.5}I_{0.5}$	90	10	Monoclinic TIPb ₂ Br ₅
TIPb ₂ Br ₄ I	80	20	Two phases
$TIPb_2Br_{3.875}I_{1.125}$	77.5	22.5	Two phases
TIPb ₂ Br _{3.75} I _{1.25}	75	25	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_{3.625}I_{1.375}$	72.5	27.5	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_{3.5}I_{1.5}$	70	30	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_{3.25}I_{1.75}$	65	35	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_3I_2$	60	40	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_{2.5}I_{2.5}$	50	50	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_2I_3$	40	60	Tetragonal TIPb₂BrI₄
$TIPb_2Br_{1.5}I_{3.5}$	30	70	Tetragonal TIPb₂BrI₄
TIPb ₂ Brl ₄	20	80	Tetragonal TIPb ₂ BrI ₄
TIPb ₂ Br _{0.75} I _{4.25}	15	85	Tetragonal TIPb ₂ BrI ₄
$TIPb_2Br_{0.5}I_{4.5}$	10	90	Tetragonal TIPb ₂ BrI ₄
TIPb2Br0.375I4.625	7.5	92.5	Three phases
$TIPb_2Br_{0.25}I_{4.75}$	5	95	Three phases
$TIPb_2Br_{0.125}I_{4.875}$	2.5	97.5	Three phases
TIPb ₂ I ₅	0	100	Two phases

Figure S1. X-ray diffractograms of ternary and quaternary samples, used to study quasi-binary TIPb₂Br₅–' TIPb₂I₅' phase diagram.

Figure S2. As-grown TIPb₂Br_{5-x}I_x single crystals: $a - TIPb_2Br_3I_2$, $b - TIPb_2Br_{2.5}I_{2.5}$, $c - TIPb_2Br_2I_3$, $d - TIPb_2Br_{1.5}I_{3.5}$, $e - TIPb_2BrI_4$, $f - TIPb_2Br_{0.5}I_{4.5}$.

Figure S3. Experimental and calculated diffraction patterns for $TIPb_2Br_{2.5}I_{2.5}$ (i.e., 50 mol.% ' $TIPb_2I_5$ ') and their difference.

Atom Wyckoff site x/a y/b z/c B(is/eq) **TIPb₂Br_{0.5}I_{4.5}** (a = 8.80047(7)Å, c = 15.2176(1)Å), V=1178.58(2) Å³, $R_p = 6.73$, $R_{wp} = 8.67$ 4*a* 1.38(8) ΤI 0 0 1⁄4 Pb 8h 0.16859(8) x+1/2 0 1.08(4) 0.50Br + 0.50I 4*c* 0 0 0 1.03(2) 16/ 0.15264(7)x+1/2 0.35877(8) 1.19(7)L **TIPb₂Brl**₄ (a = 8.68754(7) Å, c = 15.2518(1) Å), V=1151.10(1) Å³, $R_p = 7.83$, $R_{wp} = 10.90$ ΤI 4*a* 0 0 1⁄4 3.59(7) Pb 8h 0 0.16458(6)x+1/2 1.38(4)Br 4*c* 0 0 0 0.7(1) 16/ Т 0.15660(6)x+1/2 0.35815(6) 1.09(4) **TIPb**₂**Br**_{1.5}**I**_{3.5}(a = 8.65986(5) Å, c = 15.18378(9) Å), V=138.68(1) Å³, $R_p = 7.54$, $R_{wp} = 9.99$ ΤI 4a 0 1/4 2.26(6) 0 Pb 8h 0 0.16396(5) x+1/2 0.83(4)Br 4*c* 0 0 1.06(3)0 0.12(2)Br + 0.88(2) I 16/ 0.15794(6)x+1/2 0.35853(6) 1.15(6) $TIPb_2Br_2I_3(a = 8.62492(5) Å, c = 15.06791(9) Å),$ V=1102.13(1) Å³, $R_p = 7.19, R_{wp} = 9.59$ ТΙ 4*a* 2.71(5) 0 1⁄4 0 Pb 8h 0 0.16380(5) x+1/2 1.55(4) Br 4*c* 0 0 1.07(2) 0 0.26(2) Br + 0.74(2) I 16/ 0.15766(6) x+1/2 0.35838(6)1.45(5) $TIPb_2Br_{2.5}I_{2.5}(a = 8.58906(5) Å,$ c = 14.9397(1) Å) V=1102.13(1) Å³ $R_p = 6.14, R_{wp} = 7.89$ ΤI 4*a* 2.96(5)0 0 1⁄4 Pb 8h 0.16652(5) x+1/2 0 1.25(3) Br 4*c* 0 0 0 1.37(3) 16/ 1.44(4)0.38(1) Br + 0.62(1)I 0.15630(6) x+1/2 0.3589(6) **TIPb**₂**Br**₃**I**₂ (a = 8.55483(8) Å, c = 14.8026(1) Å), V=1083.33(2) Å³, $R_p = 8.60$, $R_{wp} = 11.08$ ΤI 4*a* 0 0 1⁄4 2.21(2) Pb 8h 0.17238(9) x+1/2 0 1.34(3)Br 4*c* 0 1.02(5) 0 0 0.51(2) Br + 0.49(2) I 16/ x+1/2 0.3577(1)1.38(6) 0.14782(8) **TIPb₂Br_{3.5}I_{1.5}** (a = 8.51785(2) Å, c = 14.6573(1) Å), V=1063.44(1) Å³, $R_p = 6.71$, $R_{wp} = 8.62$ ТΙ 4*a* 0 1⁄4 2.41(3) 0 0 Pb 8h 0.16685(5)x+1/2 0.98(4)Br 4*c* 0 0 0 1.52(3)16/ 0.69(1) Br + 0.31(1) I 0.15472(6)x+1/2 0.35860(6) 1.41(6)

Table S3. Coordinates and thermal displacement parameters of atoms in the $TIPb_2Br_{5-x}I_x$ (structure type $NH_4Pb_2Br_5$, space group I4/mcm)

 Table S4. Crystallographic data for the TIPb2BrI4 compound.

Property	Characteritic	
Space group	<i>I</i> 4 <i>/m c m</i> (№ 140)	
Unit cell dimensions	<i>a</i> = 8.7041(3) Å	
	<i>c</i> = 15.2692(6) Å	
Cell volume	1156.8(2) ų	
Density, calculated	6.9255(8) g/cm ³	
Pearson code	t/32	
Wyckoff sequence	lhca	
Radiation and wavelength	CuKα, 1.54185 Å	
Two-theta and sinT/l (max)	100.02 and 0.497	
R	0.0581	
R _P	0.1459	

Figure S4. Experimental and theoretical diffraction patterns of the TIPb₂BrI₄ compound and their difference.

Figure S5. Survey XPS spectra measured for the TIPb₂Br_{5-x}I_x solid solutions: $1 - TIPb_2Br_3I_2$, $2 - TIPb_2Br_{2.5}I_{2.5}$, $3 - TIPb_2Br_2I_3$, $4 - TIPb_2Br_{1.5}I_{3.5}$, $5 - TIPb_2BrI_4$, $6 - TIPb_2Br_{0.5}I_{4.5}$.