Phenyl bioisosteres in medicinal chemistry:

Discovery of novel γ-secretase modulators as a potential treatment for Alzheimer's disease

H. Ratni*, K. Baumann, P. Bellotti, X. A. Cook, L. G. Green, T. Luebbers, M. Reutlinger, A. F. Stepan, W. Vifian
${ }^{1}$ F. Hoffmann-La Roche Ltd., pRED, Pharma Research \& Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland

Supplementary informations

In vitro cellular $\mathbf{A} \beta$ secretion assay:

Human neuroglioma H4 cells stably overexpressing human APP695 isoform with the Swedish double mutation (K595N/M596L) were plated at 30,000 cells/well/ $100 \mu \mathrm{l}$ in 96 -well plates in IMDM media containing 10% FCS, $0.2 \mathrm{mg} / 1$ Hygromycin B and incubated at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2.3-4$ hr post plating, test compounds were diluted in culture media and $50 \mu \mathrm{l}$ is added to the wells as 1.5 -fold concentrate to achieve the final concentration. Compound incubation is performed for 24 hr. Final doses typically range from $4 \mu \mathrm{M}$ down to $0.0013 \mu \mathrm{M}$ in half-log steps resulting in a eight point dose response curve. Appropriate controls using vehicle only and reference compound were applied to this assay. The final concentration of Me2SO was 0.4%.

After incubation at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2$, the supernatant was subjected to quantification of secreted $\mathrm{A} \beta$ peptides by the means of an AlphaLisa assay kits (Perkin Elmer). $20 \mu 1$ of the cell culture supernatant was transferred to an assay plate. Then $10 \mu \mathrm{l}$ of a mixture of the AlphaLisa coupled capture antibody and the biotinylated detection antibody was added and incubated for 3 hours at room temperature while softly shaking the assay plate. After a further addition of $20 \mu \mathrm{l}$ of the Donor beads the assay plate was incubated for 30 min at room temperature and constant shaking without exposure to direct light. The assay plate was then read on a Paradigm AlphaLisa Reader using the build-in program with excitation at 680 nm and emission at 570 nm .

The measured signals were then used to calculate IC50 values for inhibition of A β peptides secretion by nonlinear regression fit analysis using XLfit 5.3 software (IDBS).

Lipophilicity $(\log \mathrm{D})$ determination by high-throughput shake-flask

The applied methods called CAMDIS© (CArrier Mediated DIstribution System) for the determination of distribution coefficients are derived from the conventional 'shake flask' method. CAMDIS® is carried out in 96-well microtiterplates in combination with the novel DIFI©-tubes constructed by Roche, which provide a hydrophobic layer for the octanol phase. The experiment starts with the accurate coating of the hydrophobic layer (0.45 mm PVDF membranes), which is fixed on the bottom of each DIFIC-tube: Each membrane is impregnated with exactly 1.0 mL 1 octanol by a robotic system (Microfluidic Dispenser BioRAPTR, Bechman Coulter). To expand the measurement range down to $\log \mathrm{D}=-0.5$, the procedure is carried at two different octanol/water ratios. One with a overplus of octanol for hydrophilic compounds $(\log \mathrm{D}<1)$ and one with a low volume of octanol for the lipophilic compounds $(\log \mathrm{D}>1)$. Therefore, some DIFI®-tubes are filled with $15 \mu 1$ 1-octanol. The coated membranes are then connected to a 96 -well plate which has been prefilled with exactly 150 mL of the selected aqueous buffer solution (25 mM Phosphate, pH 7.4). The buffer solution already contains the compound of interest with a starting concentration of 100 mM . The resulting sandwich construct guarantees that the membrane is completely dipped in the buffered sample solution. The plate is then sealed and shaken for 24 hours at room temperature $\left(23^{\circ} \mathrm{C}\right)$. During this time the substance is distributed between the layer, the octanol and the buffer solution. After distribution equilibrium is reached the DIFIC-tubes are easily disassembled from the top of the 96 -well plate, so that the remaining sample concentration in the aqueous phase can be analyzed by LC/MS. In order to know the exact sample concentration before incubation with 1 octanol, a part of the sample solution is connected to DIFIC-tubes without impregnation. The distribution coefficient is then calculated from the difference in concentration in the aqueous phase with and without impregnation and the ratio of the two phases. The preparation of the sample solutions is carried out by a TECAN robotic system (RSP 100, 8 channels).

Solubility Determination (Lysa Assay).

Samples were prepared in duplicate from 10 mM DMSO stock solutions. After evaporation (1h) of DMSO with a centrifugal vacuum evaporator (Genevac Technologies), the
compounds were dissolved in 0.05 M phosphate buffer (pH 6.5), stirred for 1 h , and shaken for 2 h. After one night, the solutions were filtered using a microtiter filter plate (Millipore MSDV N65), and the filtrate and its $1 / 10$ dilution were then analyzed by direct UV measurement or by HPLC-UV. In addition, a four point calibration curve was prepared from the 10 mM stock solutions and used for the solubility determination of the compounds. Starting from 10 mM stock solution, the measurement range for MW 500 was $0-666 \mu \mathrm{~g} / \mathrm{mL}$.

Compound Synthesis and Characterization. Chemistry.

Reactions were carried out under argon atmosphere. Unless otherwise mentioned, all reagents and chemicals were obtained from commercial suppliers and used without further purification. All reactions were followed by TLC (TLC plates F254, Merck) or LCMS (liquid chromatographymass spectrometry) analysis. The purity of final compounds as measured by HPLC was at least above 95%. Flash column chromatography was carried out either using cartridges packed with silica gel (Isolute Columns, Telos Flash Columns) or on glass columns on silica gel 60 (32-60 mesh, $60 \AA$). LC-MS high resolution spectra were recorded with a Agilent LC-system consisting of Agilent 1290 high pressure system, an Agilent 1290 multisampler and a Agilent 6545 QTOF. The separation was achieved on a Zorbax Eclipse Plus C18 $1,7 \mu \mathrm{~m} 2.1^{*} 50 \mathrm{~mm}$ column at $55^{\circ} \mathrm{C}$; $\mathrm{A}=0.02 \%$ formic acid in Water; $\mathrm{B}=$ acetonitrile with 0.01% formic acid at flow $0.8 \mathrm{~mL} / \mathrm{min}$. gradient: $0 \min 5 \% \mathrm{~B}, 0.3 \mathrm{~min} 5 \% \mathrm{~B}, 4.5 \mathrm{~min} 99 \% \mathrm{~B} 5 \mathrm{~min} 99 \% \mathrm{~B}$

1 Preparation of the amino-linker-oxadiazole derivatives 22-25.

22

23

24

25

Scheme 1.

This derivative was purchase from a commercial source
1.b. Preparation of 3-(5-methyl-1,3,4-oxadiazol-2-yl)-3-azabicyclo[3.2.1]octan-8-amine 23

23

This derivative was prepared according to our reported synthesis (J. Med. Chem. 2020, 63 (15), 8534-8553.
1.c. Preparation of 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24

24

According to scheme 1 .
Step a: i. To a stirred solution of methyl 3-aminobicyclo[1.1.1]pentane-1-carboxylate hydrochloride 26a ($1.05 \mathrm{~g}, 5.91 \mathrm{mmol}$) in THF (30 mL) was added boc-anhydride ($1.42 \mathrm{~g}, 1.51$ $\mathrm{mL}, 6.5 \mathrm{mmol})$ and $\mathrm{iPr}_{2} \mathrm{Net}(5.1 \mathrm{~mL}, 29.6 \mathrm{mmol})$. The reaction was stirred over night at RT , concentrated under vacuo, and redissolved in EtOAc (50 mL) and washed successively with an aqueous solution of saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL}), 3 \%$ citric acid $(25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated udner vacuo and a column chromatography (EtOAC / Heptane) yielded (1.20 g, 84\% yield) of tert-butyl N-[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[1.1.1]pentanyl]carbamate as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63-3.75(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.36(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.51(\mathrm{~s}$, 9H). LCMS (ES) found: $186.1\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right)^{+}$
ii. To a stirred solution of tert-butyl N-[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[1.1.1]pentanyl]carbamate ($0.77 \mathrm{~g}, 3.2 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added hydrazine hydrate, 80% in water, $(2.5 \mathrm{~mL}, 41 \mathrm{mmol})$. The mixture was heated at $80^{\circ} \mathrm{C}$ for 15 minutes, cooled down to RT and concentrated under vacuo to afford (0.77 g , quantitative yield) tert-butyl N-[3-(hydrazinecarbonyl)-1-bicyclo[1.1.1]pentanyl]carbamate 27a as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.8(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.3(\mathrm{~s}, 6 \mathrm{H}), 1.4-1.5$ (m, 9H). LCMS (ES) found: $242.2(\mathrm{M}+\mathrm{H})^{+}$

Step b: tert-Butyl N-[3-(hydrazinecarbonyl)-1-bicyclo[1.1.1]pentanyl]carbamate 27a (0.77 g, 3.2 $\mathrm{mmol})$ was suspended in EtOAc $(14 \mathrm{~mL})$ before acetic acid $(0.22 \mathrm{~mL}, 3.83 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}$, 12.8 mmol) and propylphosphonic anhydride solution ($50 \mathrm{wt}$. \% in EtOAc; $4.7 \mathrm{~mL}, 8.0 \mathrm{mmol}$) were added providing a pale yellow solution. The reaction was heated in a microwave at $100^{\circ} \mathrm{C}$ fpr 15 minutes, and then at $140^{\circ} \mathrm{C}$ for 30 minutes and then cooled down to RT. The reaction was concentrated under high vacuum, and the residue dissolved in EtOAc, washed with brine. The organic phase was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (30-80\% EtOAc in heptane) to yield ($0.74 \mathrm{~g}, 87 \%$ yield) tert-butyl N -[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[1.1.1]pentanyl]carbamate 28a as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 6 \mathrm{H}), 3.8(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 1.4-1.5(\mathrm{~m}$, 9H). LCMS (ES) found: $266.2(\mathrm{M}+\mathrm{H})^{+}$

Step c: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ solution of tert-butyl N -[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[1.1.1]pentanyl]carbamate $\mathbf{2 8 a}(0.74 \mathrm{~g}, 2.8 \mathrm{mmol})$ was added TFA ($4.3 \mathrm{~mL}, 55 \mathrm{mmol}$). After stirring at RT for 45 minutes, the reaction was concentrated under vacuo, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with an aqueous saturated solution of NaHCO_{3}, and then brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under high vacuum to yield ($0.37 \mathrm{~g}, 78 \%$ yield) 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24 as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.5(\mathrm{~s}, 3 \mathrm{H}), 2.3(\mathrm{~s}, 6 \mathrm{H}) . \operatorname{LCMS}(\mathrm{ES})$ found: $166.1(\mathrm{M}+\mathrm{H})^{+}$

1.d. Preparation of 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine 25

25

According to scheme 1 .
Step a: i. To a stirred solution of methyl 4-aminobicyclo[2.2.2]octane-1-carboxylate 26b (1.50 g, 8.19 mmol) in THF (40 mL) was added boc-anhydride ($1.97 \mathrm{~g}, 2.09 \mathrm{~mL}, 9.0 \mathrm{mmol}$) and $\mathrm{iPr}_{2} \mathrm{Net}$ ($4.3 \mathrm{~mL}, 24.6 \mathrm{mmol}$). The reaction was stirred over night at RT , concentrated under vacuo, and redissolved in EtOAc (50 mL) and washed successively with an aqueous solution of saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL}), 3 \%$ citric acid $(25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo to yield $(2.29 \mathrm{~g}, 99 \%$ yield) of methyl 4-(tert-butoxycarbonylamino)bicyclo[2.2.2]octane-1-carboxylate as a white solid.
${ }^{1}$ H NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.6(\mathrm{~s}, 3 \mathrm{H}), 1.8-1.9(\mathrm{~m}, 12 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H})$. LCMS (ES) found: $228.2(\mathrm{M}+\mathrm{H})^{+}$
ii. To a stirred solution of methyl 4-(tert-butoxycarbonylamino)bicyclo[2.2.2]octane-1carboxylate ($2.29 \mathrm{~g}, 8.1 \mathrm{mmol}$) in $\mathrm{MeOH}(13.5 \mathrm{~mL})$ was added hydrazine hydrate, 80% in water, ($6.4 \mathrm{~mL}, 105 \mathrm{mmol}$). The mixture was heated at $80^{\circ} \mathrm{C}$ for 17 hours, cooled down to RT and concentrated under vacuo to afford ($2.1 \mathrm{~g}, 85 \%$ yield) tert-butyl N -[4-(hydrazinecarbonyl)-1bicyclo[2.2.2]octanyl]carbamate 27b as a white solid.
${ }^{1} H$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.7(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.1(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.6-1.7(\mathrm{br} \mathrm{s}, 12 \mathrm{H})$, $1.3(\mathrm{~s}, 9 \mathrm{H})$. LCMS (ES) found: $284.2(\mathrm{M}+\mathrm{H})^{+}$

Step b: tert-Butyl N-[4-(hydrazinecarbonyl)-1-bicyclo[2.2.2]octanyl]carbamate 27b (2.1 g, 6.8 $\mathrm{mmol})$ was suspended in $\mathrm{EtOAc}(25 \mathrm{~mL})$ before acetic acid $(0.47 \mathrm{~mL}, 8.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.8 \mathrm{~mL}$, 27.3 mmol) and propylphosphonic anhydride solution (50 wt. \% in EtOAc; $10.2 \mathrm{~mL}, 17.1 \mathrm{mmol}$) were added providing a pale yellow solution. The reaction was heated in a microwave at $150^{\circ} \mathrm{C}$ for 30 minutes, and then cooled down to RT. The reaction was concentrated under high vacuum, and the residue dissolved in EtOAc, washed with brine. The organic phase was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography ($0-50 \%$ EtOAc in heptane) to yield ($1.49 \mathrm{~g}, 70 \%$ yield) tert-butyl N -[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[2.2.2]octanyl]carbamate 28b as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 12 \mathrm{H}), 1.4(\mathrm{~s}, 9 \mathrm{H})$. LCMS (ES) found: $308.2(\mathrm{M}+\mathrm{H})^{+}$

Step c: To an acetone (17 mL) solution of tert-butyl N-[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[2.2.2]octanyl]carbamate 28b ($1.46 \mathrm{~g}, 4.7 \mathrm{mmol}$) was added an aqueous solution of HCl ($30 \%, 3.5 \mathrm{~mL}, 42.7 \mathrm{mmol}$). After stirring at RT for 4 hours, the resulting white precipitate was collected, suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with an aqueous saturated solution of NaHCO_{3}, and then brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under high vacuum to yield (1.12 g, 97\% yield) 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine $\mathbf{2 5}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR: $(300 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.1$ (br s, 2H), $2.4(\mathrm{~s}, 3 \mathrm{H}), 1.7-2.0(\mathrm{~m}, 12 \mathrm{H})$. LCMS (ES) found: $208.2(\mathrm{M}+\mathrm{H})^{+}$

2. Preparation of final derivatives 5-20

Figure 1.

2.1 Preparation of 29-31

The 3-bromo-5-(3-chlorophenoxy)-1-isopropyl-1,2,4-triazole 29 was prepared according to our procedure reported in WO2018087018. The 2-[2-chloro-6-[(4-chlorophenyl)methyl]pyrimidin-4-yl]propan-2-ol 30 was prepared according to our procedure reported in WO2012/116965 and US20110201605. Finally, the compounds 2-bromo-4-(3-chlorophenyl)-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidine 31a and 2-bromo-4-[4-(trifluoromethoxy)phenyl]-6,7-dihydro$5 \mathrm{H}-[1,2,4]$ triazolo $[1,5$-a $]$ pyrimidine 31b were made according to our procedures reported in WO2018060300.

Those derivatives 5-20 were prepared according to the scheme 2 below using either a buchwald coupling or a nucleophilic aromatic substitution between the amino-linker derivatives 22-25 and the bromo-triazoles and chloro-pyrimidine compounds 29-31.

a) General conditions for the buchwald conditions

To a solution of an halid-derivatives 29-31 (1 eq) in MeTHF was added 1 equivalent of an aminolinker intermediate 22-25. The reaction mixture was degased and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.05 \mathrm{eq}$.), $t \mathrm{Bu}-\mathrm{Xphos}$ (0.1 eq) and $\mathrm{NaO} t \mathrm{Bu}$ (6.0 eq .) were added. The reaction mixture was heated at $80-100^{\circ} \mathrm{C}$ until completion of the reaction (usually between 0.5 and 8 hours) and concentrated under vacuo. A purification was done either by column chromatography or reverse phase preparative HPLC to afford the desired product.

b) General condition for the SNAr

To a solution of the halid-derivative $\mathbf{3 0}(1 \mathrm{eq})$ in NMP was added 1 equivalent of an amino-linker intermediate 23-25 and $i \operatorname{Pr}_{2} \mathrm{NEt}$ (6.0 eq). The reaction mixture was heated in a microwave at $150-$ $175^{\circ} \mathrm{C}$ until completion of the reaction (usually between 0.5 and 1.5 hour) and concentrated under vacuo. A purification was done either by column chromatography or reverse phase preparative HPLC to afford the desired product.

Scheme 2.

Preparation of 7

Using a Buchwald type coupling between 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24 and 3-bromo-5-(3-chlorophenoxy)-1-isopropyl-1,2,4-triazole 29, was obtained (39 mg, 32\% yield) 5-(3-chlorophenoxy)-1-isopropyl-N-[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[1.1.1]pentanyl]-1,2,4-triazol-3-amine 7 as an oil.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.45$ (spt, 1H, $d=6.6 \mathrm{~Hz}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. LCMS (ES) found: 401.2 / $403.2\left({ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Preparation of 8

Using a Buchwald type coupling between 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine 25 and 3-bromo-5-(3-chlorophenoxy)-1-isopropyl-1,2,4-triazole 29, was obtained (26 mg , 15\% yield) 5-(3-chlorophenoxy)-1-isopropyl-N-[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[2.2.2]octanyl]-1,2,4-triazol-3-amine $\mathbf{8}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H})$, $4.42(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.79(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.13(\mathrm{~m}, 12 \mathrm{H}), 1.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. LCMS (ES) found: 443.3 / $445.3\left({ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Preparation of $\mathbf{1 1}$

11
Using a SNAr coupling between 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24 and 2-[2-chloro-6-[(4-chlorophenyl)methyl]pyrimidin-4-yl]propan-2-ol 30, was obtained (10 $\mathrm{mg}, \quad 16 \%$ yield) 2-[6-[(4-chlorophenyl)methyl]-2-[[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[1.1.1] pentanyl]amino]pyrimidin-4-yl]propan-2-ol 11 as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.80-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{brd}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.94(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.45(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H})$. LCMS (ES) found: 426.2 / $428.2\left({ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Using a SNAr coupling between 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine 25 and 2-[2-chloro-6-[(4-chlorophenyl)methyl]pyrimidin-4-yl]propan-2-ol 30, was obtained (28 $\mathrm{mg}, \quad 14 \%$ yield) 2-[6-[(4-chlorophenyl)methyl]-2-[[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1bicyclo[2.2.2] octanyl]amino]pyrimidin-4-yl]propan-2-ol $\mathbf{1 2}$ as a white solid.
${ }^{1} H$ NMR: ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta \mathrm{ppm}: 7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.71$ (br s, 1H), 6.51 (br s, 1H), $5.08(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.84-2.09(\mathrm{~m}, 12 \mathrm{H})$. LCMS (ES) found: $468.4 / 470.4\left({ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Preparation of 15

15

Using a Buchwald type coupling between 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24 and 2-bromo-4-(3-chlorophenyl)-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidine 31a, was obtained (7 mg, 6\% yield) 4-(3-chlorophenyl)-N-[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[1.1.1]pentanyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine $\mathbf{1 5}$ as an oil. ${ }^{1} \mathbf{H}$ NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.53(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}$. $1 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, $6 \mathrm{H}), 2.30(\mathrm{dt}, \mathrm{J}=11.6,6.0 \mathrm{~Hz}, 2 \mathrm{H})$. LCMS (ES) found: $398.2 / 400.2\left({ }^{35} \mathrm{Cl} /{ }^{/ 37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Preparation of 16

Using a Buchwald type coupling between 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine 25 and 2-bromo-4-(3-chlorophenyl)-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidine 31a, was obtained (29 mg, 46\% yield) 4-(3-chlorophenyl)-N-[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[2.2.2]octanyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine 16 as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.30-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.08(\mathrm{~m}, 12 \mathrm{H})$. LCMS (ES) found: $440.2 / 442.2\left({ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}: 3: 1\right)(\mathrm{M}+\mathrm{H})^{+}$

Preparation of 19

19

Using a Buchwald type coupling between 3-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[1.1.1]pentan-1-amine 24 and 2-bromo-4-[4-(trifluoromethoxy)phenyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5a]pyrimidine 31b, was obtained ($15 \mathrm{mg}, 10 \%$ yield) N -[3-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[1.1.1]pentanyl]-4-[4-(trifluoromethoxy)phenyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine 19 as a white solid.
${ }^{1}$ H NMR: $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.43-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{q}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) . \operatorname{LCMS}(\mathrm{ES})$ found: $448.2(\mathrm{M}+\mathrm{H})^{+}$

Preparation of 20

Using a Buchwald type coupling between 4-(5-methyl-1,3,4-oxadiazol-2-yl)bicyclo[2.2.2]octan-1-amine 25 and 2-bromo-4-[4-(trifluoromethoxy)phenyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5a]pyrimidine 31b, was obtained ($36 \mathrm{mg}, 36 \%$ yield) N -[4-(5-methyl-1,3,4-oxadiazol-2-yl)-1-bicyclo[2.2.2]octanyl]-4-[4-(trifluoromethoxy)phenyl]-6,7-dihydro-5H-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine $\mathbf{2 0}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR: $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 7.44-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.01-4.06(\mathrm{~m}, 2 \mathrm{H})$, 3.71-3.78(m, 2H), $2.48(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.10(\mathrm{~m}, 12 \mathrm{H})$. LCMS (ES) found: $490.3(\mathrm{M}$ $+\mathrm{H})^{+}$

4.3 Preparation of compound (\boldsymbol{S})-21

Scheme 3 Reagents and conditions: (a) $\mathrm{Fe}(\mathrm{Pc})$, TBHP, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, di-tert-butyl azodicarboxylate, $\mathrm{MeCN},-20^{\circ} \mathrm{C}$ to $\mathrm{RT}, 52 \%$; b) 6 M HCl in $\mathrm{MeOH}, \mathrm{RT}$; c) Raney $\mathrm{Ni}, \mathrm{H}_{2}, \mathrm{MeOH}$, RT, quantitative; d) 1,1'-thiocarbonylbis(pyridin-2(1 H)-one, DIPEA, DCM, RT; e) $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH , RT; f) MeI, $\mathrm{EtOH}, 75^{\circ} \mathrm{C}, 71 \%$; g) 6-chloro-2-(2,3,4-trifluorophenyl)hexanoic acid, TEA, T3P ${ }^{\circledR}$, DMF, RT; h) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, DMF, $60^{\circ} \mathrm{C}, 25 \%$; i) $\mathrm{LiCl}, \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 74 \%$; j) chiral HPLC separation; k) ${ }^{\text {tBu }}$ BuXPhos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, dioxane, $110^{\circ} \mathrm{C}$, failed.

The compound (S)-21 was prepared according to scheme 3:
Step a: Preparation of di-tert-butyl 1- (3-(6- methylpyrimidin-4-yl)bicyclo[1.1.1]-pentan-1-
yl)hydrazine-1,2-dicarboxylate 34

In a two-necked round-bottom flask equipped with an argon inlet, [1.1.1]-propellane $\mathbf{3 3}$ in diethyl ether ($35.4 \mathrm{ml}, 0.1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 3.65 \mathrm{mmol}$) was diluted with dry $\mathrm{MeCN}(20 \mathrm{ml})$ under argon atmosphere and the mixture cooled to $20^{\circ} \mathrm{C}$. 4-hydrazinyl-6-methylpyrimidine hydrochloride 32 $(1.17 \mathrm{~g}, 7.29 \mathrm{mmol})$ (preparation according to Bulletin des Societes Chimiques Belges, 1959, vol. 68, p. 30), di-tert-butyl azodicarboxylate $\left(\begin{array}{llll}1.68 & \mathrm{~g}, 7.29 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.38 \mathrm{~g}, 7.29\end{array}\right.$ mmol) and $\mathrm{Fe}(\mathrm{II})$ phathalocyanine ($115 \mathrm{mg}, 182 \mu \mathrm{~mol}$) were added and the suspension was stirred for 5 minutes, then tert-butyl hydroperoxide $70 \% w / w$ in water ($704 \mathrm{mg}, 749 \mu 1,5.47 \mathrm{mmol}$) was added dropwise and the reaction was stirred for further 2 hours at $-20^{\circ} \mathrm{C}$ and then allowed to reach room temperature over 12 hours. The reaction was quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(15 \mathrm{ml})$, then diluted with ethyl acetate $(120 \mathrm{ml})$ and water $(70 \mathrm{ml})$ and the layers were separated. The organic layer was washed with brine $(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash silica gel chromatography (eluent: n-heptane:EtOAc $=8: 2$ to $1: 1$) afforded di-tert-butyl 1- (3-(6- methylpyrimidin-4-yl)bicyclo[1.1.1]-pentan-1-yl)hydrazine-1,2dicarboxylate 34 ($1.42 \mathrm{~g}, 52 \%$) as an off-white foam.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 5.95-6.53(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}$, 3H), $2.42(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. LCMS (ES) found: $391.3(\mathrm{M}+\mathrm{H})^{+}$

Steps b, c: Preparation of 3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]-pentan-1-amine 35

Step b: In a round-bottom flask, di-tert-butyl-1-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)hydrazine-1,2-dicarboxylate ($736 \mathrm{mg}, 1.88 \mathrm{mmol}$) was dissolved in 6 M HCl in methanol $(15 \mathrm{ml}, 90 \mathrm{mmol})$ and the reaction was stirred at ambient temperature for 140 minutes, then the volatiles were removed in vacuo to afford 4-(3-hydrazineylbicyclo[1.1.1]pentan-1-yl)-6methylpyrimidine hydrochloride (427 mg , quantitative yield) as a brown solid, which was used directly in the next step.
found: $191.2(\mathrm{M}+\mathrm{H})^{+}$

Step c: In a round-bottom flask, 4-(3-hydrazineylbicyclo[1.1.1]pentan-1-yl)-6-methylpyrimidine hydrochloride ($427 \mathrm{mg}, 1.88 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and a spatula of Raney Ni (50% water slurry) was added. An hydrogen balloon was attached to the main inlet and the reaction was stirred under an atmosphere of hydrogen for 22 hours. The reaction was filtered over of Dicalite ${ }^{\circledR}$ rinsing with MeOH and concentrated to afford 3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]-pentan-1-amine hydrochloride $\mathbf{3 5}$ (399 mg , quantitative yield) as a dark green solid, which was used without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}) . \operatorname{LCMS}(\mathrm{ES})$
found: $176.1(\mathrm{M}+\mathrm{H})^{+}$

Steps d, e, f: Preparation of 2-methyl-3-[3-(6-methylpyrimidin-4-yl)-1-bicyclo[1.1.1]pentanyl]isothiourea 36

Step d: In a round-bottom flask, 3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-amine hydrochloride ($399 \mathrm{mg}, 1.88 \mathrm{mmol}$) and $i \operatorname{Pr}_{2} \mathrm{NEt}(487 \mathrm{mg}, 658 \mu 1,3.77 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, then 1, 1 '-thiocarbonylbis(pyridin-2($1 H$)-one) $(657 \mathrm{mg}, 2.83 \mathrm{mmol})$ was added in one portion and the reaction was stirred at room temperature for 90 minutes. The reaction mixture was directly absorbed onto silica gel and purified by flash silica gel chromatography chromatography (eluent: n-heptane:EtOAc $=7: 3$ to 1:1) to afford 4-(3-isothiocyanatobicyclo[1.1.1]pentan-1-yl)-6-methylpyrimidine ($292 \mathrm{mg}, 71 \%$) as a light green oil.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=0.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}$, $6 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$. LCMS (ES) found: $218.1(\mathrm{M}+\mathrm{H})^{+}$

Step e: In a round-bottom flask, 4-(3-isothiocyanatobicyclo[1.1.1]pentan-1-yl)-6methylpyrimidine (292 mg , 1.34 mmol) was dissolved in $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}(3 \mathrm{ml}, 21 \mathrm{mmol})$ and
the reaction was stirred at room temperature for 35 minutes, then the reaction was concentrated in vacuo to afford 1-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)thiourea (315 mg, quantitative yield) as an off-white solid, which was used without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, 6H). LCMS (ES) found: $235.2(\mathrm{M}+\mathrm{H})^{+}$

Step f: To a solution of 1-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)thiourea (315 mg, $1.34 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{ml})$ was added iodomethane $(92.5 \mu \mathrm{l}, 1.48 \mathrm{mmol})$ and the reaction was heated to $75^{\circ} \mathrm{C}$ for 55 minutes, then the reaction was cooled to room temperature and concentrated in vacuo to afford methyl (3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1yl)carbamimidothioate hydroiodide $36(497 \mathrm{mg}, 98 \%)$ as an off-white foam, which was used without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=0.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}$, 3H), $2.64(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$. LCMS (ES) found: $249.2(\mathrm{M}+\mathrm{H})^{+}$

Steps g, h: Preparation of 5-[5-chloro-1-(2,3,4-trifluorophenyl)pentyl]-N-[3-(6-methylpyrimidin-4-yl)-1-bicyclo[1.1.1] pentanyl]-1H-1,2,4-triazol-3-amine 37

Step g: In a round-bottom flask, methyl (E)-N'-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)carbamimidothioate hydroiodide $(397 \mathrm{mg}, 1.06 \mathrm{mmol})$, 6-chloro-2-(2,3,4trifluorophenyl)hexanoic acid (preparation described in WO2018/83050 A1, 2018) ($355 \mathrm{mg}, 1.27$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(515 \mu \mathrm{l}, 3.69 \mathrm{mmol})$ were dissolved in dry DMF (3 ml) and $\mathrm{T}_{3}{ }^{\circledR}(1.23 \mathrm{ml}, 50 \%$ in DMF, 2.11 mmol) was added and the reaction was stirred at ambient temperature for 15 minutes, then the reaction was diluted with ethyl acetate (30 ml), washed three times with water (30 ml each time), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the crude amide (477 $\mathrm{mg}, 89 \%$) which was directly without further purification.

Step h: The crude was then re-dissolved in DMF (3 ml), followed by the addition of hydrazine hydrate $(78.3 \mu 1,1.58 \mathrm{mmol})$ and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 22 hours. The reaction was
diluted with ethyl acetate (50 ml), washed three times with water (30 ml each time), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash silica gel chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=1: 0$ to $95: 5$) to afford 5-(5-chloro-1-(2,3,4-trifluorophenyl)pentyl)- N -(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)-4H-1,2,4-triazol-3-amine $\mathbf{3 7}$ ($143 \mathrm{mg}, 28 \%$) as a light yellow foam.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88-7.00(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}$, $3 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}), 2.13-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.58(\mathrm{~m}, 2 \mathrm{H})$.

LCMS (ES) found: $475.3(\mathrm{M}+\mathrm{HCl})^{+}$

Steps i, j: Preparation of (S)-N-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)-9-(2,3,4-trifluorophenyl)-6,7,8,9-tetrahydro-5 $\mathrm{H}-[1,2,4]$ triazolo[4,3- a]azepin-3-amine $\mathbf{2 1}$

Step i: To a solution of 5-(5-chloro-1-(2,3,4-trifluorophenyl)pentyl)-N-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)-4H-1,2,4-triazol-3-amine ($168 \mathrm{mg}, 352 \mu \mathrm{~mol}$) in dry DMF (3 ml) was added lithium chloride ($14.9 \mathrm{mg}, 352 \mu \mathrm{~mol}$) and sodium tert-butoxide ($34.5 \mathrm{mg}, 352 \mu \mathrm{~mol}$) and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 70 minutes. After cooling to room temperature, the reaction was diluted with ethyl acetate (50 ml), washed three times with water (30 ml each time), the dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash silica gel chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=1: 0$ to $95: 5$) to afford rac- N -(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)-9-(2,3,4-trifluorophenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[1,5-a]azepin-2-amine 21 ($155 \mathrm{mg}, 74 \%$) as light yellow solid.

Step j: Chiral preparative HPLC on a Reprosil Chiral NR afforded (S)-N-(3-(6-methylpyrimidin-4-yl)bicyclo[1.1.1]pentan-1-yl)-9-(2,3,4-trifluorophenyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-amine (S)-21 as a colourless solid.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.81-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{br}$ d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.92-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}$, 2H). LCMS (ES) found: $441.3(\mathrm{M}+\mathrm{H})^{+}$

S3062 10.003.001.1r.esp

