Supporting Information

Synthesis and biological evaluation of selective phosphonate-bearing 1,2,3-triazole-linked sialyltransferase inhibitors

Christopher Dobie, ${ }^{a}$ Andrew P. Montgomery, ${ }^{a}$ Rémi Szabo, ${ }^{a}$ Haibo Yu, ${ }^{a, b}$ and Danielle
Skropeta *a,b
${ }^{\text {a. Molecular Horizons and the School of Chemistry \& Molecular Bioscience, Faculty of }}$ Science, Medicine and Health, University of Wollongong, Wollongong NSW 2522, Australia.
${ }^{\text {b }}$ Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
*Corresponding Author: skropeta@uow.edu.au

Table of Contents

Additional Synthetic Methods
 S3

Figure S1. Non-linear regression analysis in Michaelis-Menten equation of CMP-Neu5Ac S9 with recombinant hST6Gal I.

Figure S2. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13a-s concentrations.

Figure S3. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13a-l concentrations.

Figure S4. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three $\mathbf{1 3 c}-\boldsymbol{s}$ concentrations.

Figure S5. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three $\mathbf{1 3 c}-l$ concentrations.

Figure S6. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13f-s concentrations.

Figure S7. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three $\mathbf{1 3 f}-l$ concentrations.

NMR data of novel compoundsS14

Additional Synthesis

Uridine Synthons:

5'-O-Propargyl-2',3'-O-isopropylidenyluridine (7)

The acetonide protected 5'-O-propargyluridine compound (7) was synthesised by the method described by Sun et al., and spectral data matched those reported. ${ }^{1}$

5'-O-Propargyluridine (8)

Protected propargyl uridine $(7,540 \mathrm{mg}, 1.68 \mathrm{mmol})$ was dissolved in $10 \mathrm{~mL} 9: 1 \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$, with indium triflate (5% mol equiv.), for 4 hours at reflux. After reaction, the mixture was evaporated under reduced pressure and the crude product purified by column chromatography ($\mathrm{DCM}: \mathrm{MeOH}, 9: 1$), to give a white foam ($436 \mathrm{mg}, 92 \%$). $\mathrm{R}_{\mathrm{f}} 0.46$ (Silica, DCM:MeOH, 9:1). Spectral data matched those previously reported. ${ }^{1}$

Synthesis of α-hydroxyphosphonates:

All α-hydroxyphosphonates (compounds 10a-g) were synthesised as per the method of Montgomery et al., ${ }^{2}$ and 10a-d and $\mathbf{1 0 g}$ are characterised in that work. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}$ NMR spectra for $\mathbf{1 0 e}$ and $\mathbf{1 0 f}$ is provided in the supplementary information.

Dibenzyl α-hydroxy(3-trifluoromethyl)benzylphosphonate (10e)

From 3-trifluoromethylbenzaldehyde ($300 \mathrm{mg}, 1.72 \mathrm{mmol}$), and purified by column chromatography with a 9:1 Toluene/Acetone eluent to yield a white solid (752 mg, 78%). $\mathrm{R}_{\mathrm{f}} 0.26$ (Silica, Toluene/Acetone, 9:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.54(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.10\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{(H, P)}=10.1 \mathrm{~Hz}\right), 5.04-4.91(\mathrm{~m}$, 4H), 4.59-4.38 (bs, 1H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 137.4, $135.7\left(\mathrm{~d}^{2} \mathrm{~J}_{(C, P)}=5.8 \mathrm{~Hz}\right.$), $130.4(\mathrm{~d}$, $\left.{ }^{3} J_{(C, F)}=5.6 \mathrm{~Hz}\right), 128.7,128.6,128.0,127.0,124.9,124.0\left(\mathrm{q},{ }^{l} J_{(C, F)}=270.6 \mathrm{~Hz}\right), 123.9,70.5\left(2 \mathrm{x} \mathrm{d},{ }^{l} J_{(C, P)}\right.$ $=157.6 \mathrm{~Hz}), 69.0-68.5(\mathrm{~m}) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\left.21.1{ }^{\mathbf{1 9}} \mathbf{F}^{\mathbf{N}} \mathbf{~ N M R ~ (3 7 6 ~ M H z}, \mathbf{C D C l}_{3}\right):-62.6$ ESI-HRMS: m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 459.0949$, found 459.0967.

Dibenzyl α-hydroxy(3-[1,1,2,2-tetrafluoroethoxy])benzyl phosphonate (10f)

From 3-(1,1,2,2-tetrafluoroethoxy) benzaldehyde ($861 \mathrm{mg}, 4.34 \mathrm{mmol}$), and purified by column chromatography with a 9:1 Toluene/Acetone eluent to yield a white solid ($1750 \mathrm{mg}, 70 \%$). $\mathrm{R}_{\mathrm{f}} 0.85$ (Silica, Toluene/Acetone, 9:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): 7.37-7.14 (m, 14H), $5.87\left(\mathrm{tt}, 1 \mathrm{H},{ }^{2} \mathbf{J}_{(H, F)}\right.$ $\left.=53.0 \mathrm{~Hz},{ }^{3} J_{(H, F)}=2.5 \mathrm{~Hz}\right), 5.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{(H, P)}=10.5 \mathrm{~Hz}\right), 5.01-4.90(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.36(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 148.2, $139.2,135.9\left(\mathrm{t},{ }^{3} J_{(C, P)}=5.6 \mathrm{~Hz}\right), 129.4,128.5-127.9(\mathrm{~m}), 125.3(\mathrm{~d}$, $\left.{ }^{3} J_{(C, P)}=5.6 \mathrm{~Hz}\right), 121.0\left(\mathrm{~d},{ }^{4} J_{(C, F)}=1.8 \mathrm{~Hz}\right), 120.5\left(\mathrm{~d},{ }^{3} J_{(C, P)}=5.6 \mathrm{~Hz}\right), 116.5\left(\mathrm{tt},{ }^{1} J_{(C, F)}=270.3 \mathrm{~Hz},{ }^{2} J_{(C, F)}\right.$ $=27.8 \mathrm{~Hz}), 107.7\left(\mathrm{tt},{ }^{1} J_{(C, F)}=249.9 \mathrm{~Hz},{ }^{2} J_{(C, F)}=41.6 \mathrm{~Hz}\right), 70.3\left(\mathrm{~d},{ }^{1} J_{(C, P)}=160.1 \mathrm{~Hz}\right), 68.9\left(\mathrm{~d},{ }^{2} J_{(C, P)}=\right.$
$7.4 \mathrm{~Hz}), 68.5\left(\mathrm{~d},{ }^{2} J_{(C, P)}=7.5 \mathrm{~Hz}\right) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 21.2{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right):-$ $88.0(\mathrm{t}, J=5.4 \mathrm{~Hz}),-136.7(\mathrm{t}, J=5.4 \mathrm{~Hz})$. ESI-HRMS: m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{H}]^{+}$ 485.1141, found 485.1143 .

Synthesis of α-azidophosphonates:

Dibenzyl α-hydroxyphosphonate ($\mathbf{1 0 a - g}, 1$ equiv.) and triphenylphosphine (3 equiv.), were dissolved in dry THF under an inert atmosphere at $0^{\circ} \mathrm{C}$. Freshly prepared $\mathrm{HN}_{3}(30 \mathrm{~mL})$ was added, along with diisopropylazodicarboxyate (DIAD, 3 equiv.) dropwise, and the reaction was allowed to warm to room temperature. Upon completion (judged by TLC), the reaction mixture was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with saturated NaHCO_{3} solution $(3 \times 5 \mathrm{~mL})$ and brine ($3 \times 5 \mathrm{~mL}$). The organic phase was separated and dried with anhydrous MgSO_{4} and evaporated, with the resultant product purified by column chromatography. The α-azidophosphonates proved difficult to purify, as the hydrazine byproduct of DIAD seemed to 'stick' to the desired product during column chromatography, and would not readily precipitate when the crude product was taken up in a non-polar solvent such as hexane. This was not deemed an issue, as the hydrazine did not impact the proceeding click reaction and so it was not necessary for the α-azidophosphonate to be completely purified. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}$ NMR spectra for these compounds is provided.

Dibenzyl α-azido-3-phenoxybenzylphosphonate (11a)

From $10 \mathrm{a}(1.25 \mathrm{~g}, 2.71 \mathrm{mmol})$: purified by column chromatography using a Toluene/Acetone (1:1) eluent, to yield a white solid ($1.095 \mathrm{~g}, 83.7 \%$). $\mathrm{R}_{\mathrm{f}} 0.48$ (Silica, Toluene/Acetone, $1: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): 7.23-7.18 (m, 12H), 7.18-7.13 (m, 2H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.97-4.82(\mathrm{~m}, 4 \mathrm{H}), 4.67\left(\mathrm{~d},{ }^{2} J_{(H, P)}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 157.6$, $156.8,135.9,135.8,134.3,130.2,129.9,128.6,128.2,123.7,123.2,119.2,118.7,68.8,61.3\left(\mathrm{~d},{ }^{2} J_{(C, P)}\right.$ $=157.2 \mathrm{~Hz}$). ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 19.2. ESI-HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}$ $+\mathrm{Na}]^{+}$: 508.1406, found 508.1402.

Dibenzyl α-azido-3-cyclopentoxybenzylphosphonate (11b)

From 10b ($232 \mathrm{mg}, 0.512 \mathrm{mmol}$): purified by column chromatography using a DCM/EtOAc (99:1) eluent, to give a white solid (195 mg, 80\%). $\mathrm{R}_{\mathrm{f}} 0.68$ (Silica, DCM:EtOAc, 99:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): 7.35-7.18 (m, 11H), 6.95-6.92 (m, 2H), 6.87-6.84 (m, 1H, H4), 5.04-4.82 (m, 4H), $4.68(\mathrm{~d}$, $1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $158.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=1.5$ $\mathrm{Hz}), 128.6,128.5,128.09,128.05,120.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=6.0 \mathrm{~Hz})$, $79.2,68.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 68.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 61.8(\mathrm{~d}, J=158.7 \mathrm{~Hz}), 32.7,24.0$. ${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl ${ }_{3}$): 19.3. ESI-HRMS: m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 500.1716$, found 500.1709 .

Dibenzyl α-azido-3-phenoxy-4-fluorobenzylphosphonate (11c)

From 10c ($179 \mathrm{mg}, 0.375 \mathrm{mmol}$): purified by column chromatography using a DCM/EtOAc (99:1) eluent, to give a white solid ($141 \mathrm{mg}, 75 \%$). $\mathrm{R}_{\mathrm{f}} 0.83$ (Silica, DCM:EtOAc, 99:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~}$ CDCl $_{3}$): 7.31-7.18 (m, 12H), 7.12-7.05 (m, 4H), 6.92-6.90 (m, 2H), 5.01-4.88 (m, 4H), $4.61(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{(H, P)}=16.3 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $156.8,154.3(\mathrm{~d}, J=251.1 \mathrm{~Hz}), 144.0(\mathrm{dd}, J=12.1$, $2.8 \mathrm{~Hz}), 135.5(2 \mathrm{x} \mathrm{d}, J=5.8 \mathrm{~Hz}), 129.8,128.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 128.7,128.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 128.13$, $128.08,126.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 124.5(2 \mathrm{x} \mathrm{d}, J=6.4 \mathrm{~Hz}), 123.5,121.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 117.5,117.3(\mathrm{dd}$, $J=19.2,2.2 \mathrm{~Hz}), 68.9(2 \mathrm{x} \mathrm{d}, J=6.8 \mathrm{~Hz}), 60.9(\mathrm{~d}, J=159.2 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{2 0 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 18.8$. ${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$): -131.7. ESI-HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 526.1308 , found 526.1321.

Dibenzyl α-azido-4-fluorobenzylphosphonate (11d)

From 10d ($400 \mathrm{mg}, 1.04 \mathrm{mmol}$): purified by column chromatography using a DCM/EtOAc (99:1) eluent, to give a white solid (379 mg, 89\%). $\mathrm{R}_{\mathrm{f}} 0.68$ (Silica, DCM:EtOAc, 99:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~}$ CDCl $_{3}$): 7.36-7.27 (m, 10H), 7.21-7.19 (m, 2H), $7.00\left(\mathrm{dd},{ }^{3} J_{(H, F)}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.04-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.69$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{(H, P)}=16.3 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $162.9\left(\mathrm{dd},{ }^{1} J_{(C, F)}=248.0 \mathrm{~Hz},{ }^{5} J_{(C, P)}=3.0 \mathrm{~Hz}\right.$), $135.6\left(2 \mathrm{x} \mathrm{d},{ }^{2} J_{(C, P)}=18.4 \mathrm{~Hz}\right), 130.2\left(\mathrm{dd},{ }^{3} J_{(C, P)}=8.3 \mathrm{~Hz},{ }^{3} J_{(C, F)}=6.4 \mathrm{~Hz}\right), 128.6(\mathrm{~m}), 128.2,128.1$, $127.8\left(\mathrm{t},{ }^{3} J_{(C, P)}=3.4 \mathrm{~Hz}\right), 115.8\left(\mathrm{dd},{ }^{2} J_{(C, F)}=22.0 \mathrm{~Hz}\right), 68.9(\mathrm{~m}), 61.1\left(\mathrm{~d},{ }^{1} J_{(C, P)}=160.9 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}$ NMR (202 MHz, CDCl $\mathbf{C D}_{3}$: 19.2. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (376 MHz, $\mathbf{C D C l}_{3}$): -112.3 (2 x s). ESI-HRMS: m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 434.1046$, found 434.1066.

Dibenzyl α-azido-3-trifluoromethylbenzylphosphonate (11e)

From 10e ($600 \mathrm{mg}, 1.38 \mathrm{mmol}$): purified by column chromatography using a DCM/EtOAc (99:1) eluent, to give a white solid (608 mg, 96\%). $\mathrm{R}_{\mathrm{f}} 0.77$ (Silica, DCM:EtOAc, 99:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, $\mathbf{C D C l}_{3}$): $7.61(\mathrm{bs}, 1 \mathrm{H}), 7.57(\mathrm{bs}, 1 \mathrm{H}), 7.55(\mathrm{bs}, 1 \mathrm{H}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.20-7.33(\mathrm{~m}, 10 \mathrm{H}), 4.94-$ $5.03(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 135.4-135.6(m), 133.5 (d, $J=$ $3.7 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 131.0(\mathrm{dq}, J=33.3,2.4 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 128.8,128.69,128.67$, $128.2,125.0$ (quint, $J=3.5 \mathrm{~Hz}$), $125.0(\mathrm{sext}, J=3.5 \mathrm{~Hz}), 123.8(\mathrm{q}, J=272.7 \mathrm{~Hz}), 69.1,69.0,61.4(\mathrm{~d}$, $J=157.7 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 18.5. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$): -62.6. ESI-HRMS: m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 484.1014$, found 484.1037.

Dibenzyl α-azido-3-(1,1,2,2-tetrafluoroethoxy)benzyl phosphonate (11f)

From $10 f(331 \mathrm{mg}, 0.840 \mathrm{mmol})$: purified by column chromatography using a DCM/EtOAc (4:1) eluent, to give a white solid ($289 \mathrm{mg}, 83 \%$). $\mathrm{R}_{\mathrm{f}} 0.95$ (Silica, DCM:EtOAc, 4:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l ~} \mathbf{3}_{\mathbf{3}}$): $7.36-7.20(\mathrm{~m}, 14 \mathrm{H}), 5.89(\mathrm{tt}, 1 \mathrm{H}, J=53.1,2.8 \mathrm{~Hz}), 5.02-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\mathbf{C D}_{3}$: $148.9,135.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=4.6 \mathrm{~Hz})$, $130.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 128.7,128.64,128.62,128.19,128.17,126.3(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 121.9(\mathrm{~d}, J=2.4$ $\mathrm{Hz}), 121.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 116.5(\mathrm{tt}, J=272.5,28.7 \mathrm{~Hz}), 107.6(\mathrm{tt}, J=252.0,41.2 \mathrm{~Hz}), 69.1(\mathrm{~m}), 61.3$
$(\mathrm{d}, J=158.7 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 18.6 .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):-88.1(\mathrm{t}, J=6.8$ Hz), -136.7 (dt, $J=53.0,5.7 \mathrm{~Hz}$). ESI-HRMS: m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 532.1025, found 532.1035.

Dibenzyl a-azido-(3-benzothiophene)methylphosphonate (11g)

From $10 \mathrm{~g}(460 \mathrm{mg}, 1.08 \mathrm{mmol})$: purified by column chromatography, with a Hexane/EtOAc (1:1) eluent. This afforded a clear oil ($390 \mathrm{mg}, 80 \%$). $\mathrm{R}_{\mathrm{f}} 0.73$ (Silica, Hexane/EtOAc, 1:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): 7.86-7.75 (m, 3H), 7.38-7.35 (m, 2H), 7.34-7.29 (m, 5H), 7.27-7.21 (m, 3H), 7.14-7.11 $(\mathrm{m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 5.13-4.79(\mathrm{~m}, 4 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 140.0,137.3(2 \mathrm{x}$ s), $135.6(2 \mathrm{x} \mathrm{s}), 135.4(2 \mathrm{x} \mathrm{s}), 128.56,128.54,128.48,128.43,128.1,128.0,127.5(\mathrm{~d}, J=7.5 \mathrm{~Hz})$, 126.1, 124.9, 124.5, 122.7, 121.9, 68.9-68.8 (m), $55.4(\mathrm{~d}, J=162.7 \mathrm{~Hz})^{\mathbf{3 1}} \mathbf{P} \mathbf{~ N M R ~ (2 0 2 ~ M H z , ~ C D C l ~} \mathbf{C l}_{3}$): 19.1. ESI-HRMS: m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 472.08552$, found 472.08550 .

CuAAC 'click' coupling to form 1,2,3-triazoles:

An α-azidophosphonate (11a-g, 1 equiv.), $\mathbf{8}$ (1.2 equiv.), $\mathrm{Cu}(\mathrm{OAc})_{2}$ (0.25 equiv.), and sodium ascorbate (0.5 equiv.) were suspended in a mixture of THF and water ($1: 1$) and stirred at room temperature until starting material disappeared (4-12 hours). Upon completion (judged by TLC), the reaction mixture was concentrated under reduced pressure and extracted with EtOAc. The organic layer washed with brine, dried with anhydrous MgSO_{4}, filtered and evaporated, with the resultant product purified by column chromatography.

5'-0-[1-(Dibenzoxyphosphoryl-3-phenoxyphenylmethyl)-1,2,3-triazol-4-yl]methyluridine (12a)

From 11a ($150 \mathrm{mg}, 0.309 \mathrm{mmol}$): purified by column chromatography to give white solid (100 mg , $51 \%) . \mathrm{R}_{\mathrm{f}} 0.64(\mathrm{DCM} / \mathrm{MeOH}, 9: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 9.18(2 \mathrm{x}$ bs, 1 H$), 8.04(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H})$, $7.73(2 \times \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.13(2 \times \mathrm{d}, 1 \mathrm{H}, J$ $=21.6 \mathrm{~Hz}), 5.80(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 5.63(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.97-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.69-4.59(\mathrm{~m}$, $2 \mathrm{H}), 4.39(\mathrm{bs}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.86-3.51(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): 163.3,158.0$ (2 x s), $156.3(2 \mathrm{x} \mathrm{s}), 151.0,144.6,140.4(2 \mathrm{x} \mathrm{s}), 135.1(\mathrm{~m}), 133.6(2 \mathrm{x} \mathrm{s}), 130.6(2 \mathrm{x} \mathrm{s}), 129.9(2 \mathrm{x} \mathrm{s})$, $128.8,128.7,128.1(\mathrm{~m}), 123.9(2 \mathrm{x} \mathrm{s}), 123.0(2 \mathrm{x} \mathrm{s}), 119.3(2 \mathrm{x} \mathrm{s}), 118.8(2 \mathrm{x} \mathrm{s}), 102.3(2 \mathrm{x} \mathrm{s}), 90.7(2$ x s), $83.8(2 \mathrm{x} \mathrm{s}), 75.4(2 \mathrm{x} \mathrm{s}), 70.5(2 \mathrm{x} \mathrm{s}), 69.7(2 \mathrm{x} \mathrm{s}), 69.2(2 \mathrm{x} \mathrm{s}), 69.0(2 \mathrm{x} \mathrm{s}), 64.4(2 \mathrm{x} \mathrm{s}), 61.7(\mathrm{~d}, J$ $=159.1 \mathrm{~Hz}$). ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 16.4. ESI-HRMS: m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 790.2271$, found 790.2254 .

5'-O-[1-(Dibenzoxyphosphoryl-3-cyclopentoxyphenylmethyl)-1,2,3-triazol-4-yl]methyluridine (12b) From 11b ($156 \mathrm{mg}, 0.326 \mathrm{mmol}$): purified by column chromatography with a $9: 1 \mathrm{DCM} / \mathrm{MeOH}$ eluent to afford a white foam ($129 \mathrm{mg}, 52 \%)$. $\mathrm{R}_{\mathrm{f}} 0.68(\mathrm{DCM} / \mathrm{MeOH}, 9: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 8.80$ $(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 8.02(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 7.72(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.31-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11-$
$7.03(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.11(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=21.3 \mathrm{~Hz}), 5.79(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.96-4.60$ $(\mathrm{m}, 4 \mathrm{H}), 4.70-4.60(\mathrm{~m}, 3 \mathrm{H}), 4.5 .53(2 \mathrm{x} \mathrm{dd}, 1 \mathrm{H}, J=8.1,2.0 \mathrm{~Hz}), 24-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.86-3.45(\mathrm{~m}, 3 \mathrm{H})$, 1.91-1.72 (m, 6H), 1.67-1.57 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~ C D C l} 3$): 163.0, 158.6 (2 x s), 150.8, 144.5, $140.3(2 \mathrm{x} \mathrm{s}), 135.2-135.0(\mathrm{~m}), 132.9(2 \mathrm{x} \mathrm{s}), 130.3(2 \mathrm{x} \mathrm{s}), 128.8-128.6(\mathrm{~m}), 128.1(\mathrm{~m}), 123.0,120.4$ (m), 116.6 (2 x s), $116.0(2 \mathrm{x} \mathrm{d}, J=7.1 \mathrm{~Hz}), 102.2,91.0,84.0(2 \mathrm{x} \mathrm{s}), 79.4,75.6,70.7(2 \mathrm{x} \mathrm{s}), 69.7(2 \mathrm{x}$ s), $69.1(2 \mathrm{x} \mathrm{s}), 68.9(2 \mathrm{x} \mathrm{s}), 63.4(2 \mathrm{x} \mathrm{s}), 62.0(2 \mathrm{x} \mathrm{d}, J=155.4 \mathrm{~Hz}), 32.8,24.1 .{ }^{31} \mathbf{P} \mathbf{N M R}(\mathbf{1 6 2} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): 16.8. ESI-HRMS: m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 782.2567, found 782.2598 .

5'-O-[1-(Dibenzoxyphosphoryl-3-phenoxy4-fluorophenylmethyl)-1,2,3-triazol-4-yl]methyluridine (12c)

From 11c ($59.9 \mathrm{mg}, 0.119 \mathrm{mmol}$): purified by column chromatography using a $\mathrm{DCM} / \mathrm{MeOH}$ (9:1) eluent, to give a white solid ($51.1 \mathrm{mg}, 66 \%$). $\mathrm{R}_{\mathrm{f}} 0.67$ (Silica, DCM:MeOH, 9:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathbf{M H z}$, MeOD): $8.16(\mathrm{~s}, 1 \mathrm{H}), 7.86(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.34-7.10(\mathrm{~m}, 19 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.54(2 \mathrm{x} \mathrm{d}$, $1 \mathrm{H}, J=22.2 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 5.53(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.03-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~m}$, $2 \mathrm{H}), 4.12(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}$): 164.6, 151.0, 149.0, 144.5, 140.8, $135.4,129.6,128.4,127.8,126.9,124.3,123.3,121.9,121.6$ (d, $J=17.2 \mathrm{~Hz}$), 117.2, 101.4, 89.0, 83.4, 74.5, 70.2, 69.4-69.2 (m), 63.4, 60.6 (d, $J=155.1 \mathrm{~Hz}$). ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z , ~ M e O D) : ~ 1 6 . 3 . ~}{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (376 MHz, MeOD): -131.6 (2 x s). ESI-HRMS: m / z calculated for $\mathrm{C}_{55} \mathrm{H}_{49} \mathrm{FN}_{5} \mathrm{O}_{14} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 808.2158 , found 808.2160.

5'-O-[1-(Dibenzoxyphosphoryl-4-fluorophenylmethyl)-1,2,3-triazol-4-yl]methyluridine (12d)

From 11d (109 mg, 0.265 mmol): purified by column chromatography with a 9:1 $\mathrm{DCM} / \mathrm{MeOH}$ eluent to afford a white foam ($106 \mathrm{mg}, 57 \%) . \mathrm{R}_{\mathrm{f}} 0.62(\mathrm{DCM} / \mathrm{MeOH}, 9: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): 9.52$ $(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 8.01(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.01(2 \mathrm{x} \mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.15(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=22.2 \mathrm{~Hz}), 5.82(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}$, $J=3.0 \mathrm{~Hz}), 5.59(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.96-4.80(\mathrm{~m}, 4 \mathrm{H}), 4.59-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 3 \mathrm{H})$, 3.86-3.49 (m, 3H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathbf{~ M H z , ~ C D C l} 3$): $163.5(2 \mathrm{x} \mathrm{s}), 163.4(2 \mathrm{x} \mathrm{d}, J=274.4 \mathrm{~Hz}), 151.0$, $144.7(2 \mathrm{x} \mathrm{s}), 140.5(2 \mathrm{x} \mathrm{s}), 134.9-135.1(\mathrm{~m}), 130.8(\mathrm{~m}), 128.8,128.68,128.65,128.15,128.12,128.09$, $122.9(2 \mathrm{x} \mathrm{s}), 116.3(2 \mathrm{x} \mathrm{d}, J=21.3 \mathrm{~Hz}$), $103.0(2 \mathrm{x} \mathrm{s}), 102.3(2 \mathrm{x} \mathrm{s}), 90.7(2 \mathrm{x} \mathrm{s}), 83.8,75.4(2 \mathrm{x} \mathrm{s}), 70.5$ $(2 \mathrm{x} \mathrm{s}), 69.8(2 \mathrm{x} \mathrm{s}), 69.3(2 \mathrm{x} \mathrm{s}), 69.1(2 \mathrm{x} \mathrm{s}), 64.4,61.2(\mathrm{~d}, J=155.8 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ 16.5. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): -111.0 (2 x m). ESI-HRMS: m / z calculated for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 716.1898$, found 716.1899.

5'-O-[1-(Dibenzoxyphosphoryl-3-trifluoromethylphenylmethyl)-1,2,3-triazol-4-yl]methyluridine (12e)

From $11 \mathbf{e}(159 \mathrm{mg}, 0.344 \mathrm{mmol})$: purified by column chromatography with a $9: 1 \mathrm{DCM} / \mathrm{MeOH}$ eluent to afford a white foam ($156 \mathrm{mg}, 60 \%$) $\mathrm{R}_{\mathrm{f}} 0.56(\mathrm{DCM} / \mathrm{MeOH}, 9: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{M e O D}):$ 8.85-8.34 ($2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}$), 8.31-8.11 ($2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}$), $7.71(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.41-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.21$
$(\mathrm{m}, 2 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.12(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=22.0 \mathrm{~Hz}), 5.80(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=$ $2.3 \mathrm{~Hz}), 5.71-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.79(\mathrm{~m}, 4 \mathrm{H}), 4.68-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{bs}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 3 \mathrm{H})$, 3.86-3.50 (m, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, MeOD): $162.6(2 \mathrm{x} \mathrm{s}), 150.0,144.7$ (2 x s), 140.6 (2 x s), $135.0,134.8(2 \mathrm{x} \mathrm{s}), 134.7(2 \mathrm{x} \mathrm{s}), 132.7(2 \mathrm{x} \mathrm{s}), 131.9(\mathrm{~m}), 129.8(2 \mathrm{x} \mathrm{s}), 128.9-128.2(\mathrm{~m}), 126.3(\mathrm{~m})$, $125.6(\mathrm{~m}), 123.5(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.0(2 \mathrm{x} \mathrm{s}), 103.2(2 \mathrm{x} \mathrm{s}), 90.2(2 \mathrm{x} \mathrm{s}), 83.6(2 \mathrm{x} \mathrm{s}), 75.3(2 \mathrm{x} \mathrm{s})$, $70.9(2 \mathrm{x} \mathrm{s}), 69.7(\mathrm{~m}), 69.5(\mathrm{~m}), 68.9(2 \mathrm{x} \mathrm{s}), 65.0(2 \mathrm{x} \mathrm{s}), 61.6(\mathrm{~d}, J=155.3 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}$, MeOD): 15.6. ${ }^{19}$ F NMR (376 MHz, MeOD): -62.7 (2 x s). ESI-HRMS: m / z calculated for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}: 765.2158$, found 765.2182 .

5'-O-[1-(Dibenzoxyphosphoryl-3-(1,1,2,2,-tetrafluoroethoxy)phenylmethyl)-1,2,3-triazol-4yl]methyluridine (12f)

From $11 \mathrm{f}(18.5 \mathrm{mg}, 0.0363 \mathrm{mmol})$: purified by column chromatography with a $9: 1 \mathrm{DCM} / \mathrm{MeOH}$ eluent to afford a white foam ($12.1 \mathrm{mg}, 52 \%$). $\mathrm{R}_{\mathrm{f}} 0.61$ (Silica, DCM:MeOH, 9:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, MeOD): $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.86(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.19$ $(\mathrm{m}, 4 \mathrm{H}), 6.54(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=22.4 \mathrm{~Hz}), 6.32(\mathrm{tt}, 1 \mathrm{H}, J=52.5,3.0 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 5.55(2$ $x \mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.07-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ MHz, MeOD): 164.6, 151.0, 149.0, 144.6, 140.9, 135.3, 134.4, 130.2, 128.6-127.8 (m), 128.4, 128.3, $128.1,128.0,127.9,127.8,127.5,127.4(2 \mathrm{x} \mathrm{s}), 126.9,124.4,122.3,121.9,121.6(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}), 116.6$ $(\mathrm{t}, J=271.0 \mathrm{~Hz}), 108.0(\mathrm{t}, J=250.6 \mathrm{~Hz}), 101.5,89.1,83.4,74.5,70.2,69.5-69.2(\mathrm{~m}), 65.5,63.5,60.6$ (d, $J=155.1 \mathrm{~Hz}$). ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, ~ M e O D$): $16.1 .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ M e O D) : ~ - 8 9 . 8 , ~ - 1 3 9 . 2 . ~}$ ESI-HRMS: m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~F}_{4} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-}: 790.1901$, found 790.1902.

5'-O-[1-(Dibenzoxyphosphorylbenzothiophen-3-ylmethyl)-1,2,3-triazol-4-yl]methyluridine

From $\mathbf{1 1 g}$ ($105 \mathrm{mg}, 0.234 \mathrm{mmol}$): purified by column chromatography with a 9:1 DCM/MeOH eluent to afford a white foam ($97.7 \mathrm{mg}, 57 \%$). $\mathrm{R}_{\mathrm{f}} 0.65$ ($\mathrm{DCM} / \mathrm{MeOH}, 9: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l} 3$): $8.95(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 8.22(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.59(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=20.9 \mathrm{~Hz}), 5.80(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=3.1$ $\mathrm{Hz}), 5.62(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.01-4.75(\mathrm{~m}, 4 \mathrm{H}), 4.63-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 4 \mathrm{H}), 3.82-3.56$ $(\mathrm{m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $163.0,150.9(2 \mathrm{x} \mathrm{s}), 144.8(2 \mathrm{x} \mathrm{s}), 140.3(2 \mathrm{x} \mathrm{s}), 139.8(2 \mathrm{x} \mathrm{s})$, $137.2(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 135.03,134.99,134.8(2 \mathrm{x} \mathrm{d}, J=5.1 \mathrm{~Hz}), 129.0-128.6(\mathrm{~m}), 128.14,128.08(2 \mathrm{x}$ s), $125.5(2 \mathrm{x} \mathrm{s}), 125.3(2 \mathrm{x} \mathrm{s}), 125.0(2 \mathrm{x} \mathrm{s}), 123.0(2 \mathrm{x} \mathrm{s}), 122.8(2 \mathrm{x} \mathrm{s}), 121.2,102.2(2 \mathrm{x} \mathrm{s}), 90.9(2 \mathrm{x}$ s), 83.9, $75.5(2 \mathrm{x} \mathrm{s}), 70.6(2 \mathrm{x} \mathrm{s}), 69.8-69.7(\mathrm{~m}), 69.4-69.3(\mathrm{~m}), 69.0(2 \mathrm{x} \mathrm{s}), 64.5(2 \mathrm{x} \mathrm{s}), 54.9(\mathrm{~d}, J=$ $159.1 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 16.6 (2 x s). ESI-HRMS: m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{PSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 754.1717$, found 754.1713 .

CMP-Glo based Sialyltransferase Inhibition Assay

Recombinant human ST3Gal I and ST6Gal I were obtained from R\&D Systems, CMP-Neu5Ac (purified prior to use by size exclusion chromatography), Gal- $\beta 1,3-$ GalNAc and LacNAc were from Carbosynth. Assays were performed in a sodium cacodylate buffer (5.0 mM sodium cacodylate, 15.0 $\mu \mathrm{M} \mathrm{NaCl}, 0.05 \%$ Triton X-100). Assays were performed in a solid white 96 -well plate, in a $25 \mu \mathrm{~L}$ volume for one hour, incubated at room temperature. CMP detection reagent was prepared as per Promega's guidelines, and $25 \mu \mathrm{~L}$ was added, with luminescence measured after a further hour of incubation. In each assay a CMP standard curve was established in duplicate, with concentrations ranging from $0-100 \mu \mathrm{M}$.

Enzyme activity curve

To determine the amount of enzyme to use in each assay, an assay was performed using amounts of enzyme ranging from $0-500 \mathrm{ng} /$ well. The amount of enzyme was added in $15 \mu \mathrm{~L}$ of assay buffer, to which was added $10 \mu \mathrm{~L}$ of a mixture containing $25 \mu \mathrm{M}$ CMP-Neu5Ac and 2.5 mM acceptor (Gal- $\beta 1,3-$ GalNAc and LacNAc for ST3Gal I and ST6Gal I respectively). The resultant sigmoidal activity curve of luminescence vs quantity of enzyme showed a linear region of response, which gave a guideline as to the amount of enzyme that should be used for subsequent reactions.

Interpolation	Luminescence (RLU)
	Y
Sigmoidal, 4PL, X is log(concentration)	
Best-fit values	
Top	193637
Bottom	3751
LogIC50	68.26
HillSlope	0.01169
IC50	$1.824 \mathrm{e}+068$
Span	189886
95\% CI (asymptotic)	
Top	178245 to 209028
Bottom	-30104 to 37606
LogIC50	50.31 to 86.21
HillSlope	0.006578 to 0.01679
IC50	$2.038 \mathrm{e}+050$ to $1.632 \mathrm{e}+086$
Span	147449 to 232323
Goodness of Fit	
Degrees of Freedom	20
R square	0.9756
Adjusted R square	0.972
Absolute Sum of Squares	1724622611

Figure S1. Enzyme-activity curve for ST6Gal I in the CMP-Glo ${ }^{\mathrm{TM}}$ assay. The assay gave a $\mathrm{R}^{2}=0.9756$ for the sigmoidal response curve.

Figure S2. Enzyme-activity curve for ST3Gal I in the CMP-Glo ${ }^{\text {TM }}$ assay. The assay gave a $\mathrm{R}^{2}=0.9942$ for the sigmoidal response curve.

Determination of CMP-Neu5Ac $\boldsymbol{K}_{\mathrm{m}}$ against hST6Gal I

CMP-Neu5Ac was diluted to $1250,625,312.5,156.3,78.1,39.1,19.5,9.8,4.9,2.4,1.2$, and $0 \mu \mathrm{M}$, while the enzyme was diluted to $60 \mathrm{ng} / 5 \mu \mathrm{~L}$. In duplicate on a solid white 96 -well plate, $10 \mu \mathrm{~L}$ of donor, $10 \mu \mathrm{~L}$ of 2.5 mM acceptor, and $5 \mu \mathrm{~L}$ of enzyme were added. The assay was then performed as per the general procedure detailed above. The K_{m} was calculated using non-linear regression analysis with GraphPad Prism 7.

Substrate-Activity Curve for ST6Gal I and CMP-Neu5Ac

罒	Nonlin fit	v , (moVs/ng protein)
4		Y
1	Michaelis-Menten	
2	Best-fit values	
3	$V_{\text {max }}$	3.11e-015
4	Km	37.16
5	Std. Error	
6	Vmax	8.547e-017
7	Km	5.422
8	95\% CI (profile likelihood)	
9	$V_{\text {max }}$	$2.847 \mathrm{e}-015$ to $3.396 \mathrm{e}-015$
10	Km	27.44 to 50.23
11	Goodness of Fit	
12	Degrees of Freedom	17
13	R square	0.9694
14	Absolute Sum of Squares 6	6.589e-031
15	Sy.x	1.969e-016
16	Constraints	
17	Km	Km > 0
18		

Figure S3. Non-linear regression analysis in Michaelis-Menten equation of CMP-Neu5Ac with recombinant hST6Gal I. This is the same data as from our previous work. ${ }^{2}$

Single point inhibition at 100 and $\mathbf{1 0} \boldsymbol{\mu M}$

Enzyme was diluted to $20 \mathrm{ng} / 5 \mu \mathrm{~L}$ and $60 \mathrm{ng} / 5 \mu \mathrm{~L}$ for ST 3 Gal I and ST6Gal I respectively. To a solid white 96 well plate, $10 \mu \mathrm{~L}$ of a mixture of 2.5 mM acceptor and $250 \mu \mathrm{M}$ donor in assay buffer, $10 \mu \mathrm{~L}$
of a 250 or $25 \mu \mathrm{M}$ solution of inhibitor in assay buffer (for inhibition at 100 or $10 \mu \mathrm{M}$ respectively), and $5 \mu \mathrm{~L}$ of enzyme solution were added to each well in duplicate. A positive control with no inhibitor was also prepared, as well as a negative control where no enzyme was present. The assay was then performed as per the general procedure detailed above. Percentage inhibition was calculated relative to the positive control, with the negative control used as a blank.

Determination of inhibitor $\boldsymbol{K}_{\mathbf{i}}$ against hST6Gal I

CMP-Neu5Ac was diluted to $2500,625,156.3,39.1$, and 9.8 , while the enzyme was diluted to $60 \mathrm{ng} / 5$ $\mu \mathrm{L}$. Inhibitors were diluted to three concentrations, usually between $0.5-62.5 \mu \mathrm{M}$. To a solid white 96 well plate, $5 \mu \mathrm{~L}$ of CMP-Neu5Ac solution, $5 \mu \mathrm{~L}$ of 5 mM acceptor in assay buffer, $10 \mu \mathrm{~L}$ of inhibitor solution, and $5 \mu \mathrm{~L}$ of enzyme solution were added to each well in duplicate. The assay was then performed as per the general procedure detailed above. The K_{i} 's were calculated using non-linear regression analysis with GraphPad Prism 8.

Figure S4. Non-linear regression analysis in of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13a-s concentrations.

Velocity vs. CMP-Neu5Ac

1/V-1/[S]

笰	Nonlin fit Table of results	A	B	c	D
		25000 nM	5000 nM	1000 nM	Global (shared)
4					
1	Noncompetitive inhibition				
2	Best-fit values				
3	Vmax	$2.200 \mathrm{e}-015$	$2.200 \mathrm{e}-015$	$2.200 \mathrm{e}-015$	$2.200 \mathrm{e}-015$
4	I	= 25000	= 5000	= 1000	
5	Ki	53686	53686	53686	53686
6	KM	201.9	201.9	201.9	201.9
7	Std. Error				
8	Vmax	4.707e-017	4.707e-017	4.707e-017	4.707e-017
9	Ki	10220	10220	10220	10220
10	KM	29.35	29.35	29.35	29.35
11	95\% Cl (asymptotic)				
12	V max	$2.101 \mathrm{e}-015$ to 2.299e-015	2.101e-015 to 2.299e-015	2.101e-015 to 2.299e-015	2.101e-015 to 2.299e-015
13	Ki	32214 to 75159	32214 to 75159	32214 to 75159	32214 to 75159
14	KM	140.3 to 263.6	140.3 to 263.6	140.3 to 263.6	140.3 to 263.6
15	Goodness of Fit				
16	Degrees of Freedom				18
17	R squared	0.9635	0.9868	0.9805	0.9797

Figure S5. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13a-l concentrations.
Velocity vs. CMP-Neu5Ac

- 25000 nM
$\pm 5000 \mathrm{nM}$
$\rightarrow 1000 \mathrm{nM}$

篓	Nonlin fitTable of results	A	B	c	D
		25000 nM	5000 nM	1000 nM	Global (shared)
4					
1	Noncompetitive inhibition				
2	Best-fit values				
3	V max	1.291e-015	1.291e-015	1.291e-015	1.291e-015
4	I	= 25000	= 5000	$=1000$	
5	Ki	6163	6163	6163	6163
6	KM	92.70	92.70	92.70	92.70
7	Std. Error				
8	V max	$3.813 \mathrm{e}-017$	$3.813 \mathrm{e}-017$	$3.813 \mathrm{e}-017$	$3.813 \mathrm{e}-017$
9	Ki	1044	1044	1044	1044
10	KM	21.72	21.72	21.72	21.72
11	95\% CI (asymptotic)				
12	V max	$1.211 \mathrm{e}-015$ to $1.372 \mathrm{e}-015$			
13	Ki	3968 to 8357	3968 to 8357	3968 to 8357	3968 to 8357
14	KM	47.06 to 138.3	47.06 to 138.3	47.06 to 138.3	47.06 to 138.3
15	Goodness of Fit				
16	Degrees of Freedom				18
17	R squared	0.9180	0.9314	0.9594	0.9649

Figure S6. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13c-s concentrations.
Velocity vs. CMP-Neu5Ac

比	Nonlin fitTable of results	A	B	C	D
		25000 nM	5000 nM	1000 nM	Global (shared)
,					
1	Noncompetitive inhibition				
2	Best-fit values				
3	Vmax	$9.114 \mathrm{e}-016$	$9.114 \mathrm{e}-016$	$9.114 \mathrm{e}-016$	$9.114 \mathrm{e}-016$
4	1	$=25000$	$=5000$	$=1000$	
5	Ki	34414	34414	34414	34414
6	KM	82.03	82.03	82.03	82.03
7	std. Error				
8	Vmax	2.086e-017	2.086e-017	2.086e-017	$2.086 \mathrm{e}-017$
9	Ki	5762	5762	5762	5762
10	KM	13.09	13.09	13.09	13.09
11	95\% CI (asymptotic)				
12	V max	8.675e-016 to 9.552e-016	8.675e-016 to 9.552e-016	8.675e-016 to 9.552e-016	8.675e-016 to 9.552e-016
13	Ki	22309 to 46519	22309 to 46519	22309 to 46519	22309 to 46519
14	KM	54.53 to 109.5	54.53 to 109.5	54.53 to 109.5	54.53 to 109.5
15	Goodness of Fit				
16	Degrees of Freedom				18
17	R squared	0.9856	0.9569	0.9681	0.9705

1/V-1/[S]

Figure S7. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13c-l concentrations.

Velocity vs. CMP-Neu5Ac

안	Nonlin fit Table of results	A	B	c	D
		25000 nM	5000 nM	1000 nM	Global (shared)
4					
1	Noncompetitive inhibition				
2	Best-fit values				
3	$V_{\text {max }}$	7.204e-015	7.204e-015	7.204e-015	7.204e-015
4	1	$=25000$	$=5000$	$=1000$	
5	Ki	6677	6677	6677	6677
6	KM	799.5	799.5	799.5	799.5
7	Std. Error				
8	$V_{\text {max }}$	1.100e-016	1.100e-016	1.100e-016	1.100e-016
9	Ki	585.3	585.3	585.3	585.3
10	KM	149.3	149.3	149.3	149.3
11	95\% CI (asymptotic)				
12	$V_{\text {max }}$	6.973e-015 to 7.435e-015	6.973e-015 to 7.435e-015	6.973e-015 to 7.435e-015	$6.973 \mathrm{e}-015$ to $7.435 \mathrm{e}-015$
13	Ki	5448 to 7907	5448 to 7907	5448 to 7907	5448 to 7907
14	KM	485.8 to 1113	485.8 to 1113	485.8 to 1113	485.8 to 1113
15	Goodness of Fit				
16	Degrees of Freedom				18
17	R squared	0.8898	0.9893	0.9992	0.9929

Figure S8. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13f-s concentrations.

Figure S9. Non-linear regression analysis of velocity vs [CMP-NeuAc] with recombinant hST6Gal I at three 13f-l concentrations.

References:

1. J. Sun, R. Liu, Q. Fu, J. Zang, Q. Tao, J. Wu and H. Zhu, Helv. Chim. Acta, 2014, 97, 733-743.
2. A. P. Montgomery, C. Dobie, R. Szabo, L. Hallam, M. Ranson, H. Yu and D. Skropeta, Bioorg. Med. Chem., 2020, 28, 115561.

10e (${ }^{1} \mathrm{H}$ NMR)

10e (${ }^{31}$ P NMR)

Current NAME	Data Parameters CD9
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20190205
Time	10.57 h
INSTRUM	spect
PROBHD	z108618_0921 (
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	16
DS	4
SWH	64102.563 Hz
FIDRES	1.956255 Hz
AQ	0.5111808 sec
RG	196.38
DW	7.800 usec
DE	50.00 usec
TE	299.9 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
SFO1	161.9796378 MHz
nuc1	31 P
P1	15.00 usec
PLW1	11.77099991 W
SFO2	400.1616006 MHz
NUC2	1H
CPDPRG[2	waltz16
PCPD2	90.00 usec
PLW2	11.52400017 W
PLW12	0.27886000 W
PLW13	0.14026000 W
F2 - Processing parameters	
SI	32768
SF	161.9877372 MHz
WDW	EM
SSB	0 -
LB	1.00 Hz
GB	0

11a (${ }^{31}$ P NMR)

$\begin{array}{lrr}\text { Current } & \text { Data Parameters } \\ \text { NAME } & \text { LH14 (C and P) } \\ \text { EXPNO } & 2 \\ \text { PROCNO } & & 1\end{array}$
F2 - Acquisition Parameters
Date_ 20180423

$$
\begin{array}{lr}
\text { Date_ } & 20180423 \\
\text { Time } & 17.33 \mathrm{~h}
\end{array}
$$

$$
\begin{aligned}
& \text { INSTRUM } \\
& \text { PRORHD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PULP } \\
& \text { TD } \\
& \text { SOLV }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TD } \\
& \text { SOLVENT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NS } \\
& \text { DS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DS } \\
& \text { SWH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SWH } \\
& \text { FIDRES } \\
& \text { AO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FIDRE } \\
& \text { AQ } \\
& \text { RG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RG } \\
& \text { DW } \\
& \text { DE } \\
& T E
\end{aligned}
$$

D11
TD0

$$
\begin{aligned}
& \text { TDO } \\
& \text { SFO1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SFO1 } \\
& \text { NUC1 } \\
& \text { D1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUC1 } \\
& \text { P1 } \\
& \text { PLW1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P1 } \\
& \text { PLW1 } \\
& \text { SFO2 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{SFO2} \\
& \text { NUC2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUC2 } \\
& \text { CPDPRG[2 } \\
& \text { PCPD2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PCPD2 } \\
& \text { PLW2 }
\end{aligned}
$$

PLW2

$$
\begin{aligned}
& \text { PLW2 } \\
& \text { PLW12 }
\end{aligned}
$$

$$
\begin{array}{lc}
\text { PLW12 } & 0.27886000 \mathrm{~W} \\
\text { PLW13 } & 0.14026000 \mathrm{~W} \\
& \\
\text { F2 - Processing parameters } \\
\text { SI } & 32768 \\
\text { SF } & 161.9877372 \mathrm{MHz} \\
\text { WDW } & 0
\end{array}
$$

Current Data Parameters NAME
EXPNO EXPNO
PROCN
F2 - Acquisition Parameters
Date_ 20180413
22.41 PROBHD 2108618_0921 $\begin{array}{lr}\text { PROBHD } \\ \text { PULPROG } & \text { 2108618 } \\ \text { ID } & \text { zflqn } \\ & 131072\end{array}$ $\begin{array}{lr}\text { TD } & \text { zgf1qn } \\ \text { SOLVENT } & 131072 \\ \text { NS } & \text { CDC13 } \\ & 16\end{array}$
DS
SWH
$\begin{array}{lr} & 89285.711 \mathrm{~Hz} \\ \text { FIDRES } & 1.362392 \mathrm{~Hz}\end{array}$
$\begin{array}{ll}\text { FIDRES } & 1.362392 \mathrm{~Hz} \\ \text { AQ } & 0.7340032 \mathrm{sec} \\ \text { RG } & 196.38\end{array}$
$\begin{array}{cr}\text { RG } & 196.38 \\ \text { DW } & 5.600 \mathrm{usec}\end{array}$
5.600 usec
6.50 usec
6.50 usec
1.00000000 sec
$376.4889418^{1} \mathrm{MHz}$
19 F
7.7539 .00 us
$\begin{array}{cc}\text { F2 } & \text { - Processing parameters } \\ \text { SI } & 65536 \\ \text { SF } & 376.5265944 \mathrm{MH}\end{array}$
$\begin{array}{lr} & 376.5265944 \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0\end{array}$
$\begin{array}{lc} \\ \text { LB } & 0.30 \\ \text { GB } & 0.3\end{array}$
$\begin{array}{ll}\text { GB } & 1.00\end{array}$

Curnent Data Parameters EXAME PROCNO

$2 \text { - Acqu }$	uisition Paramet 20180705
Time	23.27 h
NSTRUM	spect
PROBHD	Z108618_0921 (
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	2048
DS	4
SWH	24038.461 Hz
FIDRES	0.733596 Hz
AQ	1.3631488 sec
RG	196.38
DW	20.800 usec
DE	6.50 usec
TE	299.5 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
SFO1	100.6303741 MHz
NUC1	13 C
P1	10.00 usec
PLW1	55.50099945 W
SFO2	400.1616006 MHz
NUC2	1H
CPDPRG[2	waltz16
PCPD2	90.00 usec
PLW2	11.52400017 W
PLW12	0.27886000 W
PLW13	0.14026000 W
F2 - Processing parameters	
SI	32768
SF	100.6203114 MHz
WDW EM	
SSB	0
LB $\quad 1.00 \mathrm{~Hz}$	
GBPC	

-18.492

11e (${ }^{31}$ P NMR)

6	$\infty \infty$	$\cdots \mathrm{m}$	のヘレレ	の－
\llcorner	\bigcirc	カレ	Nへサ○	\checkmark
の	$\bigcirc \mathrm{m}$		๑の6 6	60
4	$\cdots \square$	$\stackrel{+}{ }$	もみみみ	のの
¢	み		$\sim \sim \sim \sim$	\cdots
	$\checkmark \square$	$\square{ }^{-1}$		\cdots

13a－（s）（ ${ }^{13} \mathrm{C}$ NMR）

13a-(l) $\left({ }^{13} \mathrm{C}\right.$ NMR)

(

(

CRURER

13c-(s) (${ }^{31} \mathbf{P}$ NMR)

曈绿?

13c-(l) (${ }^{31} \mathbf{P}$ NMR)

1	100	50	0	-50	-100	-150	-200	ppm

CRKER

sfane

Current Data Parameter NAME PROCNO

F2 - Acquisition Parameters
Date_ 20191217
Time $\quad 3.43 \mathrm{~h}$
INSTRUM spect
PROBHD Z108618_0921 (
$\begin{array}{lr}\text { PULPROG } & \text { zgflqn } \\ 65536\end{array}$
$\begin{array}{lr}\text { TD } & 65536 \\ \text { SOLVENT } & \text { D20 }\end{array}$
NS
DS
SWH
SWH 89285.711 Hz
$\begin{array}{lr}\text { FIDRES } & 8.724784 \mathrm{~Hz}\end{array}$
$\begin{array}{ll}\text { AQ } & 2.724784 \mathrm{~Hz} \\ \text { RG } & 0.3670016 \mathrm{se}\end{array}$
0.7210016 sec
196.38
196.38 used
5.600
120.00 usec
299.2 K
1.00000000 sec
376.4889413 MHz

19 F
15.00 usec
17.75399971 W

F2 - Processing parameter
SI
65536

SI	65536
SF	376.5265940 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0

aftizn

13e-(l) $\left({ }^{19}\right.$ F NMR)

Current Data Parameters NAME
EXPNO EXPNO
PROCNO

F2 - Acquisition Parameters
Date_ 20200228 $\begin{array}{ll}\text { Time } \\ \text { INSTRUM CAB AV4 } & 10.51 \mathrm{~h} \\ 500 \mathrm{MHZ} \text { BASIC }\end{array}$ INSTRUM CAB AV4 500 MHZ PROBHD
PULPROG
Z150364_0005 (
za PULPROG $\begin{array}{r}\text { zg30 } \\ \text { TD }\end{array} \quad 65536$

13g-(s) (${ }^{1}$ H NMR)

罳定

```
Nurrent Data Parameters
NAME
PROCNO 2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{F2 - Acquisition Parameters} \\
\hline Date_ & 20200228 \\
\hline Time & 10.53 h \\
\hline INSTRUM & CAB AV4 500 MHZ BASIC \\
\hline PROBHD & 2150364_0005 ( \\
\hline PULPROG & zgpg 30 \\
\hline TD & 65536 \\
\hline SOLVENT & D20 \\
\hline NS & 16 \\
\hline DS & \\
\hline SWH & 81967.211 Hz \\
\hline FIDRES & 2.501441 Hz \\
\hline AQ & 0.3997696 sec \\
\hline RG & 101 \\
\hline DW & 6.100 usec \\
\hline DE & 18.00 usec \\
\hline TE & 286.4 K \\
\hline D1 & 2.00000000 sec \\
\hline D11 & 0.03000000 sec \\
\hline TD0 & 1 \\
\hline SFO1 & 202.2899643 MHz \\
\hline NUC1 & 31 P \\
\hline P1 & 12.00 usec \\
\hline PLW1 & 45.76100159 \\
\hline SFO2 & 499.7459990 MHz \\
\hline NUC2 & 1H \\
\hline CPDPRG[2 & waltz16 \\
\hline PCPD2 & 80.00 usec \\
\hline PLW2 & 15.53100014 W \\
\hline PLW12 & 0.34944999 \\
\hline PLW13 & 0.17549001 W \\
\hline \multicolumn{2}{|l|}{F2 - Processing parameters} \\
\hline SI & 32768 \\
\hline SF & 202.3000793 MHz \\
\hline WDW & EM \\
\hline SSB & 0 \\
\hline LB & 1.00 Hz \\
\hline GB & \\
\hline
\end{tabular}
```


