Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Figure S1. General chemical structure of the natural products families for wound healing

Natural product Sources		Common extraction methods	Physico-chemical properties
Family			
Alkaloids ¹	Flowering plants (e.g. Papaver	Solvent extraction using ethanol	Contain nitrogen atoms in some cyclic system,
	somniferum, Alstonia Boonei,	Silica gel chromatography	leading to their alkalinity
	Croton lechleri)		Usually colorless, odorless solids with a bitter taste
		Purification and identification can be done	
	Also present in some frogs and	with HPLC	
	lizards		
Flavonoids ²	Present in several fruits and	Solvent extraction.	Polyphenolic structure. Structure generally consists
	vegetables, roots, flowers, grains	Soxhlet apparatus using hexane for defatting,	of a 15-carbon backbone with 2 phenyl rings and a
	and tea.	followed by ethyl acetate or ethanol.	heterocyclic ring with an embedded oxygen.
			Classified depending on the degree of oxidation,
			unsaturation of the linking chain and chemical
			Structure.
Sananing 3	Cincong Indian nonnyuyart	Solvent extraction using clashels such as	They are glucosides attached to a tritemana of
Saponins ⁹	Ginseng, Indian pennywort,	solvent extraction using alconois such as	they are glycosides allached to a triterpene of
	kidney beens and lentils	using HDLC	steroid.
	kinney beans and lentils.	using HFLC.	Can be used as an emulsifying agent. Soluble in both
			water and fat Bitter taste
Tannins ⁴	Various trees and shrubs such as	Solvent extraction in water, alcohols or water	Can broadly be classified as hydrolysable and
1 dillinis	black mimosa bark oak bark	A Soxhlet apparatus can also be used	condensed tannins
	chestnut wood and mangrove	A Soxinet apparatus can also be asea.	Molecular weights ranging from 500 to 20,000
	wood, teas shrubs	Purification and identification can be done	Daltons.
		using HPLC	Possess an astringent taste and are soluble in polar
			solvents such as water and some alcohols.
Essential Oils 5	Aromatic medicinal plants such	Hydro-distillation, steam distillation or	Usually clear volatile oils with a pleasant smell.
	as lavender, thyme, peppermint,	supercritical CO ₂ extraction. Solvent	Often used for aromatherapy. Mixture of several
	tea tree. Fruit peels (e.g., citrus,	extraction with non-polar solvents such as	compounds.
	orange) also used.	hexane can also be used.	
	Most commonly extracted from		Some pure essential oils can cause contact
	the flowers, leaves and bark.		dermatitis

Table S1. Source, extraction and physico-chemical properties of alkaloids, flavonoids, saponins, tannins and essential oils

Malaaula	Sauraa	Wound healing	Deces	Wound healing	Action
Niolecule	Source	models	Dosage	phase	Action
Total alkaloid	Root bark of	Sprague-Dawley rats	10 mg/ml and	Proliferative	Anti-bacterial activity against several gram-
extract ⁶	Alstonia boonei	of either sex	above		positive and gram-negative strains.
					Faster re-epithelization than negative control
					and silver sulfadiazine treated groups.
Taspine ^{7,8}	Latex of Croton	□Male Sprague-	250 μg	Proliferative	Non-toxic to human foreskin fibroblasts at
	lechleri	Dawley rats			concentration below 150ng/ml.
		Full thickness paired			Promote migration of fibroblasts in early
		linear incisions			phases of wound healing.
Betaine/	Pure compound	Excision wound	0.1380-0.3056 µg	Proliferative	Accelerate wound closure.
Betaine enriched	from natural	Inbred Wistar albino			Enhance collagenization due to chemotactic
ointment extract 9	Remedies, India	rats of either sex			properties on fibroblast.
	Plant extract from	(6–7 weeks)			Promote neovascularization.
	Evolvus				
	alsinoides				
Mahanimbicine ¹⁰	Extract of	Full thickness wound	Thin layer of	Proliferative	Accelerate wound closure.
	Murraya koenigii	Female Sprague	ointment containing		Reduce infiltration of inflammatory cells.
	compared to pure	Dawley rats	50 mg of molecule		Promote fibroblast proliferation and enhance
	compounds		or extract applied		collagenization.
			twice daily for 14		
			days		

Table S2. In vivo results of alkaloids in wound healing

Molecule	Source	Wound healing models	Dosage	Wound healing phase	Action
		·	Flavonoid	S	
Quercetin ¹¹	Sigma-Aldrich	□Pressure ulcer model C57BL/6 mice	1 μΜ	Inflammatory	Accelerate wound closure. Anti-inflammatory- reduction in myeloperoxidase (MPO) + neutrophils, CD38+ macrophages, TNF- β , IL-1 β cytokines in wound area. Suppress activation of MAPK kinases-ENK, JNK and p38.
Quercetin ¹²	Not provided	□Diabetic wound Male Sprague-Dawley (SD) rats	10 - 40 mg/ml	Inflammatory	Accelerate wound closure in a dose dependent manner- better fibroblast and collagen distribution and angiogenesis rate- high expression level of CD31 and VEGF. Anti-inflammatory – Promote M1 to M2 polarization (low expression of \Box M1 marker iNOS and high expression of \Box M2 markers Msr-)1; low level of pro-inflammatory factors IL-6, TNF- α and high level of anti- inflammatory IL-10.
Quercetin ¹³	Not provided	□Full thickness wound Adult male Wistar rats	0.1 – 10%	Inflammatory	Accelerate wound closure at 0.1% quercetin-high fibroblast proliferation, thick and well-oriented collagen fibers. Antioxidant- No significant differences in levels of SOD, MDA, O ₂ radicals, total thiols and proteins except for catalase. Increase in catalase in quercetin treated wounds.
Quercetin ¹⁴	Not provided	Excision wound Wild-type C57Bl/6J mice	100 μL of 10 μM daily	Proliferative	Reduce scarring via fibrosis reduction resulting from an increase in cell surface expression of alpha-V integrin which promotes cell migration to the wound site in absence of excessive extracellular matrix deposition.

Table S3. In vivo results of flavonoids and saponins in wound healing

Luteolin (LUT)/ Flavonoids extract ¹⁵	Martynia annua Linn. leaves (MAF)	□Excision wound Wistar albino rats	0.2 - 0.5 % w/w	Remodeling	Accelerate wound closure and higher level of hydroxyproline - 100% and 87.61% closure; 51.67 and 39.62 mg/g for MAF and 0.5% LUT respectively compared to control (72.17% and 23.29%). No scarring and dense fibrous tissue and blood capillaries in MAF treated groups Antioxidant – Increase in SOD, CAT and GSH in 0.5% w/w LUT and MAF treated wounds.
Apigenin/ Crude extract of □flowers and their solvent or column fractions	Flowers of Helichrysum graveolens (Hg)	☐Male Sprague– Dawley rats and Swiss albino mice Linear incision and circular excision wound model	1%	Inflammatory and remodeling	Apigenin, \Box Hg–MeOH, Hg–EtOAc, Hg–Fr.B accelerate wound closure with denser collagen deposition. Anti-inflammatory - Apigenin, Hg–MeOH, Hg– EtOAc, Hg–Fr.B inhibit inflammation by 27.8%, 37.1%, 30.7% and 24.5%. Antioxidant- Apigenin showed higher DPPH scavenging activity (IC ₅₀ -31.04 µg/ml) compared to quercetin (reference) (IC ₅₀ - 2.14 µg/ml).
Kaempferol (KM) ¹⁷	Sigma-Aldrich	☐Male Wistar rats (3-4 months) Diabetic and non- diabetic Excision and incision wounds	0.5-1%	Inflammatory and remodeling	Accelerate wound healing in all conditions; promote hydroxyproline content to a larger extent in non-diabetic wounds than in diabetic wounds. General decrease in angiogenesis in both diabetic and non-diabetic rats. Tensile strength of wounds treated with 0.5% KM higher than those treated with 1% KM on day 14 in both conditions. Anti-inflammatory and antioxidant.
Naringenin ¹⁸	Not provided	☐Hypertrophic scar model Female KM mice, 8-weeks-old	25-50 μM	Inflammatory and remodeling	Reduction in scar formation in dose dependent manner – decrease in α -SMA expression and number of α -SMA positive cells in naringenin treated wounds. Anti-inflammatory- Reduction in CD68+ cells and CD4+ cells in the scar tissues of a naringenin- treated mouse with dose dependency.
Genistein ¹⁹	Sigma-Aldrich	Hypertrophic Scar	25-100 mmol/l	Remodeling	Scar reduction in dose and timely manner- reduced

		explant- □scar resection at 6– 12 months after severe burn. □Males & females people aged 10–37 years	added to culture media		stretching and proliferation of hypertrophic scar fibroblasts (HFSBs) (at 48 and 72h of culture only); reduced expression of COL I and COL III with 50 and 100 nmol/l of genistein. Suppress TPK activation and RTK-Ras- MAPK (ERK/p38) signal transduction in HSFBs. No significant effect on proliferation of normal human fibroblast <i>in vitro</i> .
Hesperidin ²⁰	Not provided	Diabetic and non- diabetic adult rats	10-80 mg/kg	Antioxidant, anti- inflammatory & angiogenesis	Dose-dependent increase in SOD, GSH and HDP activity and dose-dependent decrease in MDA and MPO, TNF- α and IL-6 levels. Maximum expression of VEGF in rats treated with 80mg/kg of hesperidin. Dose-dependent increase in VEGFR1 and VEGFR2 expression.
Formononetin ²¹	Not provided	Transgenic Zebrafish models	25-50 μM	Proliferative & remodeling	Increase in angiogenic sprouting in subintestinal vessels (SIVs) in a dose dependent manner- $50 \mu M$ formononetin increased length of sprouting vessels and endothelial cell proliferation similar to the effects induced by VEGF-A injection.
	1	1	Saponins	1	1
Total ginseng saponins (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rh1 and Rh2) ²²	Korea Ginseng	ICR mice- incised skin wound		Inflammatory & proliferative	Accelerate re-epithelization by increasing rate of keratin cell migration; inhibit inflammatory reactions during early stage and promote collagen synthesis.
Ginsenoside Rb1	Red Ginseng roots	Male Balb/c mice (5 weeks old)- burn wounds	100 fg/ml-1 ng/ml	Proliferative	Enhance neovascularization <i>in vitro</i> by increasing VEGF and H1F- α expression induced by IL-1 β in HaCaT cells.
Saponin extracts (β-sitosterol, asiatic acid, asiaticoside and madecassoside) ²⁴	Centella asiatica	Male Sprague– Dawley rats weighing 250– 300 g- incision and burn wounds	10% topical solution once daily	Inflammatory & proliferative	Mild degree of swelling, accelerated re- epithelization and keratinization and marked hair growth in extract-treated wounds in rats.
Asiaticoside 23,20	Centetta astallca	Guinea pigs (maie,	0.4% topical	Fiomerative	Accelerate re-epitnelization and horoblast

		• • • •			
		300– 325 g)- cutaneous (full thickness, completely transdermal) circular wounds of 8 mm diameter Sprague Dawley male rats (150–180 g)- diabetes induced via streptozotocin injection	solution		hydroxyproline content and tensile strength of healed tissue.
		Male Sprague Dawley rats (200–220 g)- circular, skin-deep wounds of 8 mm diameter	0.2% topical solution twice daily	Inflammatory	Increase in antioxidants in regenerated tissue of cutaneous wounds in rats at initial stage of healing: superoxide dismutase, catalase, glutathione (GSH) peroxidase, vitamin E and ascorbic acid. Significant decrease in lipid peroxide levels.
Madecassoside ²⁷	<i>Centella asiatica</i> Herbs	Male ICR mice (18 – 22 g), and male Sprague- Dawley rats, (180 – 220g)- burn wounds	24 mg/kg oral solution for 20 days	Inflammatory & proliferative	Limits infiltration of inflammatory cells enhances proliferation of fibroblasts and neo-vascularisation in treated skin of burn wounds in mice. Decrease in nitric oxide (NO) and malondialdehyde MDA (end product of lipid peroxidation) levels and increase in GSH and hydroxyproline levels in treated mice,
Astragaloside VI & Cycloastragenol- 6-O-beta-D- glucoside ²⁸	Astragali Radix (Dried roots of Astragalus membranaceus var.mongholicus)	Male C57BL/6JNarl mice, (eight-week-old) (20–25g)- Staphylococcus aureus infected, non-infected traumatic wound models	10 mM in Vaseline. Dressing changed every 2 days	Proliferative and Remodeling	Promote angiogenesis and accelerate wound closure of both non-infected and staphylococcus- aureus infected wounds in mice. Improve migration and proliferation of HaCaT and HDF skin cells via activation of the EGFR/ERK signaling pathway.

Cycloastragenol 29	Astragali Radix (Dried roots of Astragalus membranaceus var.mongholicus)	-	0.3mM	Proliferative	Promote migration and proliferation of human epidermal stem cells (EpSCs) by activating Wnt/β- catenin pathway contributing to increased TERT expression in EpSCs.
Astragaloside IV 30	Astragalus membranaceus (Fisch) Bge	-	40-160 µg/ml	Proliferative and remodeling	Attenuate LiCl induced S phase cell cycle arrest in keratinocytes. Promote migration and proliferation of keratinocytes by down-regulating β-catenin expression and up-regulating proliferating cell nuclear antigen (PCNA) expression.
Lupeol ^{31,32}	Bowdichia virgilioides	Male Wistar rats (250 $g \pm 2 g$)- full thickness excisional wound	In vitro 0.1-20 µg/ml In vivo 0.2% w/w lupeol cream	Inflammatory Proliferative	Reduce inflammation-upregulation of MMP-2 and reduced NF-κB expression <i>in vitro</i> . Reduced inflammatory cells infiltration, proinflammatory cytokine, IL6 and NF-κB expression, increased anti-inflammatory cytokine, IL-10 and SOD, HO-1 enzyme expression <i>in vivo</i> . Improved migration of human epidermal keratinocytes and expression of Akt, p38 and Tie- 2 signaling proteins involved in cell proliferation, migration and angiogenesis <i>in vitro</i> . Increase migration and proliferation of fibroblasts and neovascularisation <i>in vivo</i> - strong expression
					of FGF-2, collagen type III and angiogenic growth factors, TGF- β 1 and Hif-1 α .

Molecule	Source	Wound healing models	Dosage	Wound healing phase	Action
		·	Tannins	·	
Tannin extracts (81%) ³³	Immature fruits of Terminalia chebula Fructus Retz	Adult male Sprague- Dawley rats. (200- 220g) Acute excision	5 mg	Inflammatory	Higher VEGFA mRNA expression and amount of newly formed capillaries during early stages of wound healing compared to erythromycin ointment and Vaseline. Antibacterial activity against staphylococcus aureus and Klebsiella pneumonia.
Tannic acid ³⁴	Solarbio Corp.	Male Sprague Dawley rats (200-220g)	<i>In vitro</i> 0.1-0.4 μg/ml <i>In vivo</i> 0.5-1.5 g/ml	Proliferative	 Accelerated re-epithelization similar to Yunnan Baiyao treated group. Promote thin epidermis with well-formed hair follicles and organized collagen and reduce scarring. Higher expression of bFGF, TGF-ß, FN and VEGF.
Proanthocyanidin extract ³⁵	Grape seed	Male BalbC mice Full thickness excisional dermal wound model	25 μL of 100 mg/mL	Proliferative	Accelerated wound contraction and better organized regenerating tissue compared to placebo-treated wound. Upregulates VEGF transcription.
			Essential Of	ils	
Carvacrol ³⁶	Sigma-Aldrich	Male wistar-albino rats Full-thickness skin wounds	200 µl of 12.5% in sunflower oil for 5 days	Proliferative	Increased granulation tissue by modulating TNF- α , IL-1 β and TGF- β expressions
D-limonene 37	Sigma-Aldrich	Hairless Skh1 female mice Inflammation induced daily using 12-O- Tetradecanoylphorbol- 13-acetate dissolved in acetone Full thickness dorsal wound	10 mg/kg D- limonene in sunflower oil	Inflammatory	Accelerated wound closure. Anti-angiogenic effect. Reduce pro-inflammatory cytokines.

Table S4. In vivo results of tannins and essential oils in wound healing

Limonene and fenchone (components of <i>Foeniculum</i> <i>vulgare</i>) ³⁸	Sigma-Aldrich	Male Sprague-Dawley rats Full thickness excisional wound model	1:1 mixture of limonene and/or fenchone in olive oil	Inflammatory & Proliferative	Promote regular and denser collagen deposition, enhance angiogenesis and improve re-epithelization
Sesquiterpenoids (cedrol and widdrol) ³⁹	Juniperus occidentalis	Male Sprague-Dawley rats Linear and circular dorsal wound models	1% w/w of test ointment (glycerol stearate, 1,2- propylene glycol and liquid paraffin)	Inflammatory & Proliferative	High hydroxyproline content and faster re- epithelization in <i>J.occidentalis</i> essential oil treated wounds.
Cinnamaldehyde (CA) ⁴⁰	Beijing Naturally Occurring Drugs Research Institute	Male diabetic (BSK.Cg- m+/+Lepr ^{db} ;db/db) and WT mice. Full thickness dorsal wound model	25-100 mg/kg CA intraperitoneal injection.	Proliferative	Accelerated wound healing & promotion of angiogenesis via activation of PI3K and MAPK signaling pathways.
Trans- cinnamaldehyde	Sigma-Aldrich	Female Swiss mice Full thickness dorsal skin wound inoculated with <i>P.aerudinosa</i>	30 µL of 0.5 mg/mL sterile cinnamaldehyde applied topically	Proliferative	Faster healing in treated mice. Reduction in secretion of VEGF, IL6, IL-17, and NO.
Cinnamon essential oil (54% cinnamic aldehyde, 12.3% α -copaene, 7% styrene, ethenyle, benzebe ⁴²	<i>Cinnamomum</i> <i>verum</i> bark	BALB/c mice Full thickness dorsal wound inoculated with <i>S.aureus</i> and <i>P.</i> <i>aeruginosa</i>	2-4% w/w oil in soft yellow paraffin	Proliferative	Upregulated VEGF, IGF-1 and FGF-2 expression in infected model. Increased collagen synthesis and re- epithelization.

References

- 1 J. Kurek, in *Alkaloids Their Importance in Nature and Human Life*, IntechOpen, 2019.
- 2 A. N. Panche, A. D. Diwan and S. R. Chandra, J. Nutr. Sci., 2016, 5, 1–15.
- 3 D. Kregiel, J. Berlowska, I. Witonska, H. Antolak, C. Proestos, M. Babic, L. Babic and B. Zhang, in *Application and Characterization of Surfactants*, IntechOpen, 2017.
- 4 A. Pizzi, in *Monomers, Polymers and Composites from Renewable Resources*, Elsevier Ltd, 2008, pp. 179–199.
- 5 J. Reichling, P. Schnitzler, U. Suschke and R. Saller, *Complement. Med. Res.*, 2009, **16**, 79–90.
- 6 J. P. Fetse, J. O. Kyekyeku, E. Dueve and K. B. Mensah, *Br. J. Pharm. Res.*, 2014, 2642–2652.
- A. J. Vaisberg, M. Milla, M. C. Planas, J. L. Cordova, E. R. de Agusti, R. Ferreyra, M. C. Mustiga, L. Carlin and G. B. Hammond, *Planta Med.*, 1989, 55, 140–143.
- 8 B. H. Porras-Reyes, T. A. Mustoe, W. H. Lewis, J. Roman and L. Simchowitz, *Proc. Soc. Exp. Biol. Med.*, 1993, **203**, 18–25.
- S. Mahibalan, M. Stephen, R. T. Nethran, R. Khan and S. Begum, *Pharm. Biol.*, 2016, 54, 2851–2856.
- 10 T. Nagappan, T. C. Segaran, M. E. A. Wahid, P. Ramasamy and C. S. Vairappan, *Molecules*, 2012, **17**, 14449–14463.
- 11 G. Yin, Z. Wang, Z. Wang and X. Wang, *Exp. Dermatol.*, 2018, 27, 779–786.
- 12 J. Fu, J. Huang, M. Lin, T. Xie and T. You, J. Surg. Res., 2019, 246, 213–223.
- 13 V. Kant, B. L. Jangir, A. Nigam, V. Kumar and S. Sharma, *Wound Med.*, 2017, **19**, 82–87.
- 14 K. M. Doersch and M. K. Newell-Rogers, *Exp. Biol. Med.*, 2017, 242, 1424–1431.
- 15 S. Lodhi and A. K. Singhai, Asian Pac. J. Trop. Med., 2013, 6, 253–259.
- I. Süntar, E. Küpeli, H. Keles, E. Yesilada and S. D. Sarker, *J. Ethnopharmacol.*, 2013, 149, 103–110.
- 17 Y. Ozay, S. Guzel, O. Yumrutas, B. Pehlivanoglu, I. H. Erdogdu, Z. Yildirim, B. A. Turk and S. Darcan, *J. Surg. Res.*, 2019, **233**, 284–296.
- 18 S. Shan, Y. Zhang, M. I. N. Wu, B. O. Yi, J. Wang and Q. Li, *ACS Omega*, 2017, 4643–4649.
- 19 C. Cao, S. Li, X. Dai, Y. Chen, Z. Feng, Y. Zhao and J. Wu, 2009, **35**, 89–97.
- 20 L. Wang, T. He, A. Fu, Z. Mao and L. Yi, *Eur. J. Inflamm.*, , DOI:10.1177/2058739218775255.
- 21 S. Li, Y. Dang, X. Zhou, B. Huang, X. Huang, Z. Zhang, Y. W. Kwan, S. W. Chan, G. Pak, H. Leung, S. Ming, Y. Lee, M. Pui and M. Hoi, *Nat. Sci. Reports*, 2015, **5**, 16815.
- 22 Y. S. Kim, I. Cho, M. Jeong, S. Jeong, S. Y. Nah, Y. Cho, S. H. Kim, A. Go, S. E. Kim, S. S. Kang, C. J. Moon, J. C. Kim, S. H. Kim and C. S. Bae, 2011, **35**, 360–367.
- 23 Y. Kimura, M. Sumiyoshi, K. Kawahira and M. Sakanaka, *Br. J. Pharmacol.*, 2006, **148**, 860–870.
- 24 J. Somboonwong, M. Kankaisre, B. Tantisira and M. H. Tantisira, *BMC Complement. Altern. Med.*, DOI:10.1186/1472-6882-12-103.
- 25 A. Shukla, A. M. Rasik, G. K. Jain, R. Shankar and D. K. Kulshrestha, *J. Ethnopharmacol.*, 1999, **65**, 1–11.
- 26 A. Shukla, A. M. Rasik and B. N. Dhawan, *Phyther. Res.*, 1999, **13**, 50–54.
- 27 M. Liu, Y. Dai, Y. Li, Y. Luo, F. Huang, Z. Gong and Q. Meng, *Planta Med.*, 2008, 74, 809–815.
- 28 S. Lee, S. Lee, W. Chang, Z. Li, N. S. Kirkby and W. Tsai, *Phytomedicine*, 2019, 38,

183–191.

- 29 Y. Cao, L. Xu, X. Yang, Y. Dong, H. Luo, F. Xing and Q. Ge, Biomed Res. Int.
- 30 F. L. Li, X. Li, Y. F. Wang, X. L. Xiao, R. Xu, J. Chen, B. Fan, W. Bin Xu, L. Geng and B. Li, *Evidence-based Complement. Altern. Med.*, DOI:10.1155/2012/956107.
- 31 F. P. Beserra, M. Xue, G. Lemos, D. A. Maia, A. L. Rozza and C. J. Jackson, *Molecules*, 2018, 23, 2819.
- 32 F. P. Beserra, A. J. Vieira, L. Fernando, S. Gushiken, E. O. De Souza, M. F. Hussni, C. A. Hussni, R. H. Nóbrega, E. Ricardo, M. Martinez, C. J. Jackson, G. Lemos, D. A. Maia, A. L. Rozza and C. H. Pellizzon, *Oxid. Med. Cell. Longev.*, , DOI:10.1155/2019/3182627.
- 33 K. Li, Y. Diao, H. Zhang, S. Wang, Z. Zhang, B. Yu, S. Huang and H. Yang, *BMC Complement. Altern. Med.*, 2011, **11**, 86.
- 34 Y. Chen, L. Tian, F. Yang, W. Tong, R. Jia, Y. Zou, L. Yin, L. Li, C. He, X. Liang, G. Ye, C. Lv, X. Song and Z. Yin, *Adv. Wound Care*, 2019, **8**, 341–354.
- 35 S. Khanna, M. Venojarvi, S. Roy, N. Sharma, P. Trikha, D. Bagchi, M. Bagchi and C. K. Sen, *Free Radic. Biol. Med.*, 2002, **33**, 1089–1096.
- 36 M. Y. Gunal, A. O. Heper and N. Zaloglu, *Pharmacogn. J.*, 2014, **6**, 10–14.
- 37 P. d'Alessio, M. Mirshahi, J.-F. Bisson and M. Bene, *Antiinflamm. Antiallergy. Agents Med. Chem.*, 2014, **13**, 29–35.
- 38 I. Keskin, Y. Gunal, S. Ayla, B. Kolbasi, A. Sakul, U. Kilic, O. Gok, K. Koroglu and H. Ozbek, *Biotech. Histochem.*, 2017, **92**, 274–282.
- 39 I. Tumen, I. Süntar, F. J. Eller, H. Keleş and E. K. Akkol, *J. Med. Food*, 2013, **16**, 48–55.
- 40 X. Yuan, L. Han, P. Fu, H. Zeng, C. Lv, W. Chang, R. S. Runyon, M. Ishii, L. Han, K. Liu, T. Fan, W. Zhang and R. Liu, *Lab. Investig.*, 2018, **98**, 783–793.
- T. A. F. Ferro, E. B. Souza, M. A. M. Suarez, J. F. S. Rodrigues, D. M. S. Pereira, S. J. F. Mendes, L. F. Gonzaga, M. C. A. M. Machado, M. R. Q. Bomfim, J. B. Calixto, J. L. Arbiser, V. Monteiro-Neto, E. André and E. S. Fernandes, *Molecules*, 2019, 24, 1627.
- 42 S. G. Seyed Ahmadi, M. R. Farahpour and H. Hamishehkar, *Kaohsiung J. Med. Sci.*, 2019, **35**, 686–694.