Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5yl)acetamide ethers as novel GIRK1/2 potassium channel activators

Swagat Sharma^a, Lauren Lesiak^a, Christopher D. Aretz^a, Yu Du^b, Sushil Kumar^a, Nagsen Gautam^a, Yazen Alnouti^a, Nikilesh Dhuria^c, Yashpal S. Chhonker^c, C. David Weaver^b, Corey R. Hopkins^{a,*}

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198 USA

^bDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

^cDepartment of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198 USA

Table of Contents:

General synthetic procedures and characterization	2
¹ H and ¹³ C NMR spectra of final compounds	3-65
In vitro Pharmacology	69
Metabolite ID	70
Compound Selectivity	71-72

General Experimental Methods.

All ¹H & ¹³C NMR spectra were recorded on Bruker AV-400 (500 MHz) instrument. Chemical shifts are reported in ppm relative to residual solvent peaks as an internal standard set to δ H 3.31 or δ C 49.00 (CD₃OD) or δ H 2.50 or δ C 39.52 ((CD₃)₂SO). Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration. Low resolution mass spectra were obtained on an Agilent 1260 LCMS with electrospray ionization, with a gradient of 5-95% MeCN in 0.1% formic acid water over 4 min. Analytical thin layer chromatography was performed on LuxPlate silica gel 60 F254 plates. Visualization was accomplished with UV light, and/or the use of ninhydrin, anisaldehyde and ceric ammonium molybdate solutions followed by charring on a hot-plate. Chromatography on silica gel was performed using Silica Gel 60Å (230-400 mesh) from Sorbent Technologies. Solvents for extraction, washing and chromatography were HPLC grade. All reagents were purchased from Aldrich Chemical Co. (or similar) and were used without purification. All reagents and solvents were commercial grade and purified prior to use when necessary.

Final compounds were purified on a Gilson preparative reversed-phase HPLC system comprised of a 322 aqueous pump with solvent-selection valve, 334 organic pump, GX-271 liquid hander, two column switching valves, and a 159 UV detector. UV wavelength for fraction collection was user-defined, with absorbance at 254 nm always monitored. Column: Phenomenex Axia-packed Luna C18, 50 x 21.2 mm, 5 μ m. For Acidic Method: Mobile phase: CH₃CN in H₂O (0.1% formic acid). Gradient conditions: 2.0 min equilibration, followed by user-defined gradient (starting organic percentage, ending organic percentage, duration, typically 15 mins), hold at 95% CH₃CN in H₂O (0.1% TFA) for 2 min, 20 mL/min, 23 °C.

1. General synthetic procedure

General Procedure: A

100% ACN in water).

2-(2,4-dichlorophenoxy)-*N*-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5yl)acetamide (11a). To a stirred solution of 3-(5-amino-3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene 1,1-dioxide (50 mg, 0.23 mmol), 2-(2,4-dichlorophenoxy)acetic acid (51 mg, 0.23 mmol) and Et₃N (96 μ L, 0.69 mmol) in CH₂Cl₂ (1.0 mL) was dropwise added propylphosphonic anhydride solution \geq 50 wt. % in ethyl acetate (0.17 mL, 0.27 mmol). The reaction was stirred at RT overnight. The product was partitioned between ethyl acetate (15 mL x 2) and water (15 mL). Organic layers were combined, washed with brine, dried over sodium sulphate, concentrated and purified by reverse phase preparative chromatography (0-

Yield = 78 mg (80%, white solid). LCMS: R_T = 2.5 min., >95% @ 215 and 254 nm, *m/z* = 418.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.39 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 1H), 6.04 (s, 1H), 5.11 (p, *J* = 8.0 Hz, 1H), 4.93 (s, 2H), 3.58 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.49 (dt, *J* = 12.8, 6.3 Hz, 1H), 3.29 (dd, *J* = 13.4, 8.5 Hz, 1H), 3.18 (dt, *J* = 12.7, 8.5 Hz, 1H), 2.46 (dd, *J* = 11.2, 4.5 Hz, 2H), 2.15 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.89, 152.97, 147.87, 136.05, 129.93, 128.49, 125.62, 122.95, 115.77, 100.14, 67.84, 54.95, 52.13, 51.56, 29.53, 14.43.

General Procedure: B

2-chloro-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1***H*-**pyrazol-5-yl)acetamide (15).** To a stirred solution of 3-(5-amino-3-methyl-1*H*-pyrazol-1-yl)tetrahydrothiophene 1,1-dioxide (0.50 g, 2.3 mmol) and chloroacetyl chloride (0.28 g, 2.6 mmol) in DCM (7.0 mL) under nitrogen, was added TEA (0.97 mL; 7.0 mmol). The reaction was stirred at rt for 2 hours. After checking completion on TLC. The reaction was quenched with saturated NaHCO₃ solution (15 mL) and product was extracted with ethyl acetate (30 mL ×2). Combined organic layer was washed with brine, dried over sodium sulfate, concentrated and used as such. Yield = 0.55 g (81%, light brown solid). LCMS: $R_T = 2.407 \text{ min.} >90\%$ @ 215 and 254 nm, *m/z* = 292.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 6.05 (s, 1H), 5.19 – 5.12 (m, 1H), 4.36 (s, 2H), 3.62 – 3.58 (m, 1H), 3.48 (dd, *J* = 12.7, 6.0 Hz, 1H), 3.28 (dd, *J* = 13.4, 8.3 Hz, 1H), 3.23 – 3.15 (m, 1H), 3.08 (tt, *J* = 12.1, 6.1 Hz, 1H), 2.48 – 2.42 (m, 2H), 2.15 (s, 3H).

Respective chloroacetamide, **15**, (1.0 equiv., 0.10 mmol), phenol (1.0 equiv.) and K_2CO_3 (2.0 equiv.) in DMF (0.50 mL) are stirred at 60 °C for 6h. After completion of reaction by TLC. Product is separated between water and ethyl acetate. Organic layer is purified using Semi-prep-HPLC (Reverse phase) to yield the final compounds.

General Procedure: C

1-cyclohexyl-3-methyl-1*H***-pyrazol-5-amine.** In a 250 mL RBF, 3-aminobut-2-enenitrile (2.0 g, 0.24 mole) was added to a stirred solution of cyclohexyl hydrazine hydrochloride (4.0 g, 0.030 mol) and acetic acid (0.10 mL) in ethanol (60 mL). The reaction was refluxed for 6 h. Crude was evaporated and loaded on column to elute out product at 40% ethyl acetate in hexane.

Yield = 1.7 g (40%, yellow solid). LCMS: R_T = 1.50 min., >98% @ 215 and 254 nm, *m/z* = 180.1 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 5.02 (s, 1H), 4.92 (s, 2H), 3.86 – 3.78 (m, 1H), 1.94 (s, 3H), 1.78 – 1.68 (m, 4H), 1.63 (dd, *J* = 16.3, 7.4 Hz, 3H), 1.31 (q, *J* = 12.9 Hz, 2H), 1.18 – 1.08 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 145.90, 144.64, 87.80, 53.50, 32.13, 25.21, 25.05, 14.02.

General Procedure: D

2-methyl-4,5,6,7-tetrahydropyrazolo[**1,5-***a*]**pyrimidine.** A mixture of 3-methyl-1*H*-pyrazol-5-amine (0.67 g, 6.9 mmol), dibromo propane (0.76 mL, 7.59 mmol) and TEA (2.9 mL, 20.78 mmol) in Dioxane (5.0 mL) was stirred at 80 °C for 12 hours. Volatiles were evaporated under vacuum and loaded on silica gel. Product was eluted out by flash chromatography at 50% Ethyl acetate in hexane. Yield = 0.48 g (50%, light brown solid). LCMS: $R_T = 1.50 \text{ min.}$, >90% @ 215 and 254 nm, *m/z* = 138.0 [M + H]⁺. ¹H NMR ¹H

NMR (499 MHz, CD₃CN) δ 5.10 (s, 1H), 3.92 (t, *J* = 6.2 Hz, 2H), 3.21 – 3.17 (m, 2H), 2.05 (s, 3H), 2.04 – 2.00 (m, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 146.70, 146.33, 85.76, 44.53, 39.35, 22.28, 12.87.

11a'		3-(5-amino-3-methyl-1 <i>H</i> - pyrazol-1- yl)tetrahydrothiophene 1,1- dioxide
12a'	N S NH ₂	2-methyl-4-phenylthiazol-5- amine
12b'	ONN NH2	4-methyl-1,2,5-oxadiazol-3- amine
12c'	NH ₂	benzo[d]isoxazol-3-amine
12d'	N N NH ₂	2-cyclohexyl-6-methylpyridin- 3-amine

The following left-hand amine portions were commercially available:

The following left-hand amine portions were previously synthesized and reported in ACS Chem. Neurosci.

13a'	N NH ₂	1-isopropyl-3-methyl-1 <i>H</i> - pyrazol-5-amine
13f	N NH ₂	3-methyl-1-(tetrahydro-2 <i>H</i> - pyran-4-yl)-1 <i>H</i> -pyrazol-5- amine

The following left-hand amine portions were previously synthesized and reported in *Bioorg. Med. Chem. Lett.* **2019**, *29*, 791.

13b'		4-(5-amino-3-methyl-1 <i>H</i> - pyrazol-1-yl)tetrahydro-2 <i>H</i> - thiopyran 1,1-dioxide
13d'	N N N NH ₂	1-(4,4-dimethylcyclohexyl)- 3-methyl-1 <i>H</i> -pyrazol-5- amine
13e'	NNNH2 FFF	1-(4,4-difluorocyclohexyl)- 3-methyl-1 <i>H</i> -pyrazol-5- amine

General Procedure: D

Step 1: In a vial, the substituted phenol or aniline, **8**, (3.9 mmol) and potassium carbonate (1.5 g, 11 mmol) were dissolved in DMF (3.0 mL), followed by the addition of ethyl 2-bromoacetate (0.52 mL, 4.7 mmol). The reaction was stirred at 60 °C overnight, then diluted with ethyl acetate and washed with saturated sodium bicarbonate, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The crude product was used without further purification.

Step 2: In a vial, the substituted ethyl 2-phenoxyacetate or ethyl 2-phenylglycinate (3.3 mmol), **9**, and lithium hydroxide (0.12 g, 5.0 mmol) were dissolved in 12 mL of a 3:1.5:7.5 mixture of H₂O, methanol, and tetrahydrofuran, respectively. The reaction was stirred overnight at room temperature, then diluted with water and washed with ethyl acetate, the aqueous layer was acidified, and precipitated product was

extracted again with ethyl acetate. Organic layer washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. Product used as such.

Acids that were prepared via Procedure E and used without further purification utilizing Procedure A to synthesize the final compounds.

11b"	CI O O OH	2-(2-chlorophenoxy)acetic acid
11c"	СІ	2-(4-chlorophenoxy)acetic acid
11d"		2-(2,3-dichlorophenoxy)acetic acid
11e"		2-(2,5-dichlorophenoxy)acetic acid
11f"	CI O O Br	2-(4-bromo-2- chlorophenoxy)acetic acid
11g"	CI O O F	2-(2-chloro-4- fluorophenoxy)acetic acid
11j"	Br O O O O O O O O O H	2-(2-bromophenoxy)acetic acid
11k"	Br O OH	2-(4-bromophenoxy)acetic acid
11n"	ООН	2-(2,4-dimethylphenoxy)acetic acid
11p"	CF ₃ O O OH	2-(2- (trifluoromethyl)phenoxy)acetic acid
11u"	НИ О ОН	2-(1 <i>H</i> -indol-3-yl)acetic acid ¹
11v"	HN-N O OH	2-(1 <i>H</i> -indazol-3-yl)acetic acid ¹

11w"		(2,4-dichlorophenyl)glycine
11x"		<i>N</i> -(2,4-dichlorophenyl)- <i>N</i> -methylglycine
¹ Commercia	lly available	

Compound Characterization

2-(2-chlorophenoxy)-N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-

yl)acetamide (11b). Prepared using general procedure A. Yield = 30 mg (78%, white solid). LCMS: $R_T = 2.407 \text{ min.}, >98\%$ @ 215 and 254 nm, $m/z = 384.0 \text{ [M + H]}^+ \cdot ^1\text{H NMR}$ (499 MHz, DMSO- d_6) δ 10.16 (s, 1H), 7.50 – 7.44 (m, 1H), 7.32 (dd, J = 11.5, 4.2 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.05 (s, 1H), 5.11 (p, J = 8.1 Hz, 1H), 4.90 (s, 2H), 3.58 (dd, J = 13.4, 8.4 Hz, 1H), 3.49 (dt, J = 12.9, 6.3 Hz, 1H), 3.32 – 3.25 (m, 1H), 3.17 (dt, J = 13.1, 8.5 Hz, 1H), 2.46 (dd, J = 15.1, 8.1 Hz, 2H), 2.15 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 167.61, 154.21, 148.31, 136.57, 131.07, 129.17, 123.17, 122.36, 114.97, 100.61, 68.14, 55.41, 52.59, 52.01, 29.99, 14.89.

2-(4-chlorophenoxy)-N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-

yl)acetamide (11c). Prepared using general procedure A. Yield = 8.5 mg (22%, white solid). LCMS: $R_T = 2.444 \text{ min.}, >98\%$ @ 215 and 254 nm, $m/z = 384.0 \text{ [M + H]}^+$. ¹H NMR (499 MHz, 499 MHz, DMSO- d_6) δ 10.16 (s, 1H), 7.38 (d, J = 8.9 Hz, 2H), 7.04 (d, J = 8.9 Hz, 2H), 6.01 (s, 1H), 5.12 – 4.99 (m, 1H), 4.78 (s, 2H), 3.55 (dd, J = 13.4, 8.4 Hz, 1H), 3.48 (dt, J = 12.8, 6.2 Hz, 1H), 3.27 (dd, J = 13.6, 8.4 Hz, 1H), 3.17 (dt, J = 13.2, 8.6 Hz, 1H), 2.47 – 2.42 (m, 2H), 2.15 (s, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 167.71, 156.98, 147.83, 136.03, 129.76, 125.49, 116.97, 100.68, 67.37, 54.97, 52.13, 51.51, 29.56, 14.44.

2-(2,3-dichlorophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5**yl)acetamide (11d). Prepared using general procedure A. Yield = 19 mg (46%, yellow oil). LCMS: R_T = 2.553 min., >98% @ 215 and 254 nm, *m/z* = 418.0 [M + H]⁺. ¹H NMR (499 MHz, 499 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 7.34 (t, *J* = 8.2 Hz, 1H), 7.27 (d, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 6.04 (s, 1H), 5.11 (p, *J* = 8.0 Hz, 1H), 4.96 (s, 2H), 3.58 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.49 (dt, *J* = 12.9, 6.3 Hz, 1H), 3.29 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.18 (dt, *J* = 12.2, 8.6 Hz, 1H), 2.46 (dd, *J* = 15.3, 8.1 Hz, 2H), 2.14 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.84, 155.33, 147.85, 136.09, 132.91, 128.87, 123.13, 120.67, 112.93, 100.13, 67.95, 54.94, 52.12, 51.55, 29.52, 14.43.

2-(2,5-dichlorophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5**yl)acetamide (11e). Prepared using general procedure A. Yield = 0.30 g (80%, white solid). LCMS: R_T = 2.556 min., >98% @ 215 and 254 nm, *m/z* = 418.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.24 (d, *J* = 2.1 Hz, 1H), 7.09 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.05 (s, 1H), 5.20 – 5.10 (m, 1H), 4.98 (s, 2H), 3.59 (dd, *J* = 13.5, 8.4 Hz, 1H), 3.54 – 3.45 (m, 1H), 3.29 (d, *J* = 8.4 Hz, 1H), 3.21 – 3.12 (m, 1H), 2.50 – 2.44 (m, 2H), 2.15 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.71, 154.49, 147.88, 136.06, 132.67, 131.57, 122.43, 120.83, 114.88, 100.06, 67.79, 54.94, 52.12, 51.55, 29.56, 14.43.

2-(4-bromo-2-chlorophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-5yl)acetamide (11f). Prepared using general procedure A. Yield = 0.47 g (74%, white solid). LCMS: R_T = 2.60 min., >95% @ 215 and 254 nm, *m/z* = 461.9 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.72 (d, *J* = 2.3 Hz, 1H), 7.51 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.07 (d, *J* = 8.9 Hz, 1H), 6.04 (s, 1H), 5.16 – 5.08 (m, 1H), 4.93 (s, 2H), 3.58 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.53 – 3.46 (m, 2H), 3.29 – 3.26 (m, 1H), 3.18 (dt, *J* = 13.2, 8.6 Hz, 1H), 2.46 (M, 2H), 2.14 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.84, 153.39, 147.87, 136.06, 132.56, 131.40, 123.26, 116.25, 112.96, 100.09, 67.75, 54.95, 52.14, 51.56, 29.54, 14.43.

2-(2-chloro-4-fluorophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5-yl)acetamide (11g).** Prepared using general procedure A. Yield = 0.29 g (81%, yellow solid). LCMS: R_T = 2.460 min., >95% @ 215 and 254 nm, *m/z* = 402.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 7.48 (dd, *J* = 8.3, 3.0 Hz, 1H), 7.20 (td, *J* = 8.6, 3.0 Hz, 1H), 7.14 (dd, *J* = 9.2, 4.9 Hz, 1H), 6.04 (s, 1H), 5.11 (p, *J* = 8.0 Hz, 1H), 3.58 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.49 (dt, *J* = 12.9, 6.3 Hz, 1H), 3.29 (dd, *J* = 13.4, 8.4 Hz, 2H), 3.18 (dt, *J* = 13.1, 8.6 Hz, 1H), 2.47 (dd, *J* = 15.4, 8.3 Hz, 3H), 2.15 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.09, 150.63, 147.85, 136.08, 117.86, 115.58, 115.15, 114.97, 100.18, 68.23, 54.95, 52.12, 51.55, 29.53, 14.43.

2-(4-chloro-2-fluorophenoxy)-*N*-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5yl)acetamide (11h). Prepared using general procedure B. Yield = 25 mg (36%, white solid). LCMS: R_T = 2.43 min., >95% @ 215 and 254 nm, *m/z* = 402.0 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 8.26 (s, 1H), 7.23 (dd, *J* = 10.7, 2.2 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 1H), 7.00 (t, *J* = 8.8 Hz, 1H), 6.03 (s, 1H), 4.93 – 4.84 (m, 1H), 4.72 (s, 2H), 3.61 (ddd, *J* = 14.2, 11.1, 7.7 Hz, 2H), 3.51 (dd, *J* = 13.4, 7.9 Hz, 1H), 3.21 – 3.12 (m, 1H), 2.78 (dq, *J* = 16.2, 8.1 Hz, 1H), 2.66 (td, *J* = 13.8, 6.9 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.06, 153.37, 151.38, 149.36, 143.81, 143.72, 133.62, 128.35, 125.02, 124.99, 117.78, 117.61, 116.84, 101.59, 68.97, 54.66, 52.37, 50.97, 29.06, 14.10.

2-(2,4-dibromophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5**yl)acetamide (11i). Prepared using general procedure B. Yield = 43 mg (50%, off-white solid). LCMS: $R_T = 2.62 \text{ min.}, >95\%$ @ 215 and 254 nm, *m/z* = 505.9 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 7.84 (d, *J* = 2.1 Hz, 1H), 7.55 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 1H), 6.05 (s, 1H), 5.16 – 5.08 (m, 1H), 4.92 (s, 2H), 3.58 (dd, *J* = 13.4, 8.3 Hz, 1H), 3.49 (M, 1H), 3.30 – 3.25 (m, 1H), 3.18 (dt, *J* = 13.0, 8.5 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.77, 154.30, 147.87, 136.04, 135.27, 131.97, 116.10, 113.37, 112.66, 100.06, 67.93, 54.95, 52.13, 51.56, 29.53, 14.42

2-(2-bromophenoxy)-N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-

yl)acetamide (11j). Prepared using general procedure A. Yield = 4.7 mg (11%, white solid). LCMS: $R_T = 2.452 \text{ min.}, >95\%$ @ 215 and 254 nm, $m/z = 428.0 \text{ [M + H]}^+$. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 5.17 – 5.08 (m, 1H), 4.89 (s, 1H), 3.58 (dd, J = 13.4, 8.4 Hz, 1H), 3.49 (dt, J = 12.8, 6.3 Hz, 1H), 3.27 (dd, J = 16.4, 7.7 Hz, 1H), 3.17 (dt, J = 13.6, 8.7 Hz, 1H), 2.49 – 2.44 (m, 1H), 2.14 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.58, 154.15, 147.37, 135.64, 133.15, 128.90, 122.74, 113.96, 111.01, 99.60, 67.38, 54.47, 51.65, 51.08, 29.04, 13.94

2-(4-bromophenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-5yl)acetamide (11k). Prepared using general procedure A. Yield = 10 mg (24%, white solid). LCMS: R_T = 2.485 min., >98% @ 215 and 254 nm, *m/z* = 428.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.15 (s, 1H), 7.50 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 6.01 (s, 1H), 5.10 – 5.01 (m, 1H), 4.77 (s, 2H), 3.55 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.48 (dt, *J* = 12.8, 6.3 Hz, 1H), 3.27 (dd, *J* = 13.6, 8.5 Hz, 2H), 3.17 (dt, *J* = 13.1, 8.6 Hz, 1H), 2.47 – 2.41 (m, 3H), 2.15 (s, 4H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.69, 157.45, 147.81, 132.65, 117.49, 113.21, 100.65, 67.32, 54.96, 52.11, 51.51, 29.56, 14.44.

2-(2,5-difluorophenoxy)-*N*-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5yl)acetamide (111). Prepared using general procedure B. Yield = 22 mg (33%, off-white solid). LCMS: R_T = 2.31 min., >95% @ 215 and 254 nm, *m/z* = 386.0 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 8.25 (s, 1H), 7.16 (td, *J* = 9.6, 5.1 Hz, 1H), 6.85 – 6.75 (m, 1H), 6.03 (s, 1H), 4.92 – 4.84 (m, 1H), 4.72 (s, 1H), 3.68 – 3.56 (m, 1H), 3.50 (dd, *J* = 13.4, 7.8 Hz, 1H), 3.20 – 3.12 (m, 1H), 2.77 (dq, *J* = 16.2, 8.1 Hz, 1H), 2.66 (td, *J* = 13.8, 6.8 Hz, 1H), 2.27 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.81, 149.36, 133.52, 117.27, 117.19, 117.11, 117.03, 109.67, 109.62, 109.48, 109.43, 104.25, 104.03, 101.59, 68.77, 54.69, 52.35, 50.97, 29.11, 14.12.

2-(2,4-dimethoxyphenoxy)-*N***-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1***H***-pyrazol-5-yl)acetamide (11m).** Prepared using general procedure B. Yield = 26 mg (37%, yellow solid). LCMS: $R_T = 2.90 \text{ min.}, >95\%$ @ 215 and 254 nm, *m/z* = 410.1 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 8.83 (s, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.58 (t, *J* = 6.0 Hz, 1H), 6.48 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.00 (s, 1H), 4.90 - 4.82 (m, 1H), 4.66 (s, 2H), 3.90 (s, 3H), 3.82 (s, 3H), 3.66 - 3.56 (m, 2H), 3.48 (dd, *J* = 13.4, 7.9 Hz, 1H), 3.17 - 3.09 (m, 1H), 2.78 (td, *J* = 16.1, 8.0 Hz, 1H), 2.64 (td, *J* = 13.8, 6.9 Hz, 1H), 2.27 (s, 3H). (10-15% rotamers observed). ¹³C NMR (126 MHz, CDCl₃) δ 168.88, 156.54, 150.66, 149.27, 141.15, 134.50, 117.78, 104.17, 101.01, 100.76, 71.04, 56.17, 55.73, 54.64, 52.33, 50.98, 29.03, 14.05.

2-(2,4-dimethylphenoxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5**yl)acetamide (11n). Prepared using general procedure A. Yield = 25 mg (48%, off-white solid). LCMS: R_T = 2.49 min., >95% @ 215 and 254 nm, *m/z* = 378.1 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.00 (s, 1H), 6.98 (d, *J* = 9.7 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.02 (s, 1H), 5.06 – 4.97 (m, 1H), 4.72 (s, 2H), 3.56 – 3.49 (m, 1H), 3.46 (dd, *J* = 12.9, 6.4 Hz, 1H), 3.27 (dd, *J* = 13.4, 8.3 Hz, 1H), 3.14 (dt, *J* = 13.1, 8.6 Hz, 1H), 2.43 (dd, *J* = 16.0, 8.3 Hz, 2H), 2.22 (d, *J* = 5.1 Hz, 6H), 2.15 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 168.22, 154.23, 147.80, 136.11, 131.88, 130.21, 127.46, 126.44, 111.92, 100.66, 67.65, 54.93, 52.12, 51.49, 29.51, 20.53, 16.55, 14.43.

2-(2,4-bis(trifluoromethyl)phenoxy)-*N*-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*pyrazol-5-yl)acetamide (110). Prepared using general procedure B. Yield = 22 mg (17%, white solid). LCMS: $R_T = 2.70$ min., >95% @ 215 and 254 nm, *m/z* = 486.1 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 8.15 (s, 1H), 7.96 (s, 1H), 7.93 (d, *J* = 8.7 Hz, 1H), 7.17 (d, *J* = 8.6 Hz, 1H), 6.10 (s, 1H), 4.88 (d, *J* = 7.0 Hz, 1H), 4.85 (s, 2H), 3.70 – 3.57 (m, 3H), 3.51 (dd, *J* = 13.5, 7.8 Hz, 1H), 3.21 – 3.12 (m, 1H), 2.78 (td, *J* = 16.1, 8.0 Hz, 1H), 2.67 (td, *J* = 13.8, 6.9 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.43, 156.41, 149.47, 133.48, 131.55, 125.39, 124.86, 124.07, 121.89, 119.46, 113.30, 101.15, 67.44, 54.61, 52.33, 50.93, 29.13, 14.08.

N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)-2-(2-

(trifluoromethyl)phenoxy)acetamide (11p). Prepared using general procedure A. Yield = 16 mg (38%, white solid). LCMS: R_T = 2.513 min., >98% @ 215 and 254 nm, *m/z* = 418.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 7.68 – 7.60 (m, 2H), 7.20 (d, *J* = 8.3 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.06 (s, 1H), 5.13 (p, *J* = 8.1 Hz, 1H), 4.97 (s, 2H), 3.58 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.50 (dt, *J* = 12.9, 6.3 Hz, 1H), 3.31 – 3.27 (m, 1H), 3.17 (dt, *J* = 13.1, 8.5 Hz, 1H), 2.46 (dd, *J* = 11.2, 5.0 Hz, 2H), 2.14 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.73, 156.26, 147.87, 136.19, 136.03, 134.59, 127.34, 121.41, 114.23, 99.87, 67.39, 54.93, 52.09, 51.55, 29.54, 14.42.

N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)-2-(quinolin-6-

yloxy)acetamide (11q). Prepared using general procedure B. Yield = 16 mg (19%, clear oil). LCMS: $R_T = 1.71 \text{ min.}, >95\%$ @ 215 and 254 nm, *m/z* = 401.1 [M + H]⁺. ¹H NMR (499 MHz, CD₃CN) δ 8.81 (d, *J* = 3.5 Hz, 1H), 8.79 (s, 1H), 8.32 (d, *J* = 8.2 Hz, 1H), 8.14 (d, *J* = 9.2 Hz, 1H), 7.63 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.54 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.42 (d, *J* = 2.7 Hz, 1H), 6.01 (s, 1H), 5.04 – 4.95 (m, 1H), 4.85 (s, 2H), 3.49 – 3.40 (m, 2H), 3.36 (dd, *J* = 13.7, 7.8 Hz, 1H), 3.08 – 3.00 (m, 1H), 2.56 (dd, *J* = 8.3, 5.2 Hz, 1H), 2.52 – 2.47 (m, 1H), 2.22 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 167.83, 155.71, 148.45, 147.65, 136.29, 134.85, 129.89, 129.37, 122.65, 121.92, 107.17, 101.39, 67.33, 54.69, 52.18, 51.04, 29.26, 13.24.

N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5-yl)-2-(naphthalen-2-

yloxy)acetamide (11r). Prepared using general procedure B. Yield = 17 mg (21%, yellow oil). LCMS: $R_T = 2.45 \text{ min.}, >95\%$ @ 215 and 254 nm, $m/z = 400.1 [M + H]^+$. ¹H NMR (499 MHz, DMSO- d_6) δ 10.20 (s, 1H), 7.91 – 7.80 (m, 1H), 7.52 – 7.46 (m, 1H), 7.40 – 7.35 (m, 1H), 7.32 (dd, J = 8.9, 2.5 Hz, 1H), 6.03 (s, 1H), 5.10 – 5.04 (m, 1H), 4.89 (s, 1H), 3.55 (dd, J = 13.4, 8.5 Hz, 1H), 3.48 – 3.41 (m, 1H), 3.31 – 3.25 (m, 1H), 3.10 (dt, J = 13.1, 8.7 Hz, 1H), 2.46 – 2.38 (m, 1H), 2.15 (s, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 167.91, 155.97, 147.83, 136.06, 134.46, 129.93, 129.26, 128.03, 127.23, 127.04, 124.45, 119.07, 107.70, 100.81, 67.29, 54.96, 52.15, 51.45, 29.58, 14.44.

2-((4,6-dichloropyridin-3-yl)oxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5-yl)acetamide (11s).** Prepared using general procedure B. Yield = 14 mg (33%, white solid). LCMS: R_T = 2.28 min., >95% @ 215 and 254 nm, *m/z* = 419.0 [M + H]⁺. ¹H NMR (499 MHz, CD₃CN) δ 8.19 (s, 1H), 7.59 (s, 1H), 6.04 (s, 1H), 5.04 – 4.97 (m, 1H), 4.89 (s, 2H), 3.48 (ddd, *J* = 15.5, 13.7, 7.6 Hz, 2H), 3.39 (dd, *J* = 13.6, 7.9 Hz, 1H), 3.12 (dt, *J* = 13.2, 8.2 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.22 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 166.71, 150.00, 148.53, 143.56, 135.73, 134.65, 134.54, 125.15, 101.07, 68.56, 54.64, 52.20, 51.06, 29.20, 13.20.

2-((2,6-dichloropyridin-3-yl)oxy)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl**-1*H*-pyrazol-**5-yl)acetamide (11t).** Prepared using general procedure B. Yield = 22 mg (15%, clear oil). LCMS: R_T = 2.30 min., >95% @ 215 and 254 nm, *m/z* = 419.0 [M + H]⁺. ¹H NMR (499 MHz, CD₃CN) δ 7.50 (d, *J* = 8.5 Hz, 1H), 7.41 (d, *J* = 8.5 Hz, 1H), 6.03 (s, 1H), 4.99 (dt, *J* = 15.4, 7.8 Hz, 1H), 4.85 (d, *J* = 15.3 Hz, 2H), 3.52 – 3.43 (m, 2H), 3.38 (dd, *J* = 13.6, 7.9 Hz, 1H), 3.12 (dt, *J* = 13.2, 8.2 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.21 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 166.75, 149.68, 148.51, 140.70, 138.92, 134.61, 125.04, 124.04, 101.08, 68.20, 54.64, 52.20, 51.05, 29.17, 13.20.

N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5-yl)-2-(1*H*-indol-3-yl)acetamide (11u). Prepared using general procedure A. Yield = 12 mg (23%, clear oil). LCMS: $R_T = 2.47$ min., >95% @ 215 and 254 nm, *m/z* = 373.1 [M + H]⁺. ¹H NMR (499 MHz, CD₃CN) δ 9.44 (s, 1H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.44 (t, *J* = 11.3 Hz, 2H), 7.29 (s, 2H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 2H), 5.90 (s, 2H), 4.82 - 4.74 (m, 2H), 3.84 (s, 4H), 3.42 - 3.29 (m, 5H), 2.95 (ddd, *J* = 13.2, 9.0, 7.6 Hz, 2H), 2.50 - 2.44 (m, 2H), 2.38 (dd, *J* = 13.6, 7.0 Hz, 2H), 2.17 (s, 5H). ¹³C NMR (126 MHz, CD₃CN) δ 171.43, 148.24, 135.99, 127.26, 124.47, 124.31, 121.82, 119.28, 118.42, 111.57, 111.52, 100.79, 100.76, 54.54, 52.07, 51.01, 32.88, 29.13, 13.20.

N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1*H*-pyrazol-5-yl)-2-(1*H*-indazol-3-yl)acetamide (11v). Prepared using general procedure A. Yield = 21 mg (16%, clear oil). LCMS: $R_T = 2.04$ min., >95% @ 215 and 254 nm, *m/z* = 374.1 [M + H]⁺. ¹H NMR (499 MHz, CD₃CN) δ 8.64 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 5.97 (s, 1H), 5.05 – 4.97 (m, 1H), 4.10 (s, 2H), 3.43 (td, *J* = 13.6, 7.7 Hz, 2H), 3.38 – 3.30 (m, 1H), 3.05 (dt, *J* = 13.2, 8.2 Hz, 1H), 2.55 – 2.45 (m, 3H), 2.18 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 169.26, 148.28, 141.24, 139.97, 135.94, 126.70, 122.16, 120.59, 119.96, 110.29, 100.60, 54.65, 52.17, 51.09, 34.63, 29.13, 13.24.

2-((2,4-dichlorophenyl)amino)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl-1***H*-pyrazol-**5-yl)**acetamide (11w). Prepared using general procedure A. Yield = 13 mg (13%, clear oil). LCMS: $R_T = 2.51 \text{ min.}, >95\%$ @ 215 and 254 nm, *m/z* = 417.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 7.41 (d, *J* = 2.3 Hz, 1H), 7.22 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.62 (d, *J* = 8.8 Hz, 1H), 6.00 (s, 1H), 5.93 (t, *J* = 5.8 Hz, 1H), 5.11 – 5.03 (m, 1H), 4.06 (d, *J* = 5.8 Hz, 1H), 3.56 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.49 (dt, *J* = 12.8, 6.3 Hz, 1H), 3.28 (dd, *J* = 13.4, 8.4 Hz, 1H), 3.16 (dt, *J* = 13.1, 8.5 Hz, 1H), 2.45 (dd, *J* = 14.8, 7.6 Hz, 2H), 2.14 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 169.42, 147.80, 143.40, 136.56, 128.74, 128.30, 120.15, 118.99, 112.86, 99.98, 54.95, 52.11, 51.53, 46.52, 29.52, 14.44.

2-((2,4-dichlorophenyl)(methyl)amino)-*N*-(**1-(1,1-dioxidotetrahydrothiophen-3-yl)**-**3-methyl-1***H***pyrazol-5-yl)acetamide (11x).** Prepared using general procedure A. Yield = 29 mg (67%, white solid). LCMS: $R_T = 2.617 \text{ min.}$, >95% @ 215 and 254 nm, $m/z = 431.0 \text{ [M + H]}^+$. ¹H NMR (499 MHz, DMSO- d_6) δ 9.95 (s, 1H), 7.53 (d, J = 2.4 Hz, 1H), 7.35 (dd, J = 8.7, 2.4 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H), 6.00 (s, 1H), 5.02 (p, J = 7.9 Hz, 1H), 3.56 (dd, J = 13.4, 8.3 Hz, 1H), 3.48 (dt, J = 13.0, 6.4 Hz, 1H), 3.31 – 3.24 (m, 1H), 3.17 (dt, J = 13.2, 8.4 Hz, 1H), 2.90 (s, 3H), 2.45 (dd, J = 14.9, 7.7 Hz, 2H), 2.13 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 169.11, 148.02, 147.73, 136.58, 130.08, 128.03, 127.43, 126.66, 123.50, 100.01, 57.80, 54.96, 52.13, 51.46, 41.45, 29.49, 14.42.

2-(2,4-dichlorophenoxy)-*N***-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-ethyl-1***H***-pyrazol-5yl)acetamide (11y).** Prepared using general procedure A. Yield = 5.8 mg (10%, white solid). LCMS: R_T = 2.704 min., >95% @ 215 and 254 nm, *m/z* = 432.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.39 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 1H), 6.08 (s, 1H), 5.19 – 5.08 (m, 1H), 4.93 (s, 2H), 3.58 (dd, *J* = 13.4, 8.3 Hz, 1H), 3.49 (dt, *J* = 12.8, 6.3 Hz, 1H), 3.33 – 3.31 (m, 4H), 3.31 – 3.26 (m, 1H), 3.18 (dt, *J* = 13.1, 8.6 Hz, 1H), 2.50 – 2.43 (m, 3H), 1.15 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.87, 153.71, 152.98, 129.90, 128.48, 125.57, 122.93, 115.75, 98.58, 67.86, 54.96, 52.17, 51.58, 29.54, 21.94, 13.93.

N-(3-cyclobutyl-1-(1,1-dioxidotetrahydrothiophen-3-yl)-1H-pyrazol-5-yl)-2-(2,4-

dichlorophenoxy)acetamide (11z). Prepared using general procedure A. Yield = 9.0 mg (20%, off-white solid). LCMS: R_T = 2.812 min., >95% @ 215 and 254 nm, *m/z* = 458.1 [M + H]⁺.¹H NMR (499 MHz, CDCl₃) δ 8.36 (s, 1H), 7.47 (d, *J* = 2.3 Hz, 1H), 7.30 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 6.14 (s, 1H), 4.90 (d, *J* = 7.7 Hz, 1H), 4.70 (s, 2H), 3.69 – 3.53 (m, 2H), 3.48 (p, *J* = 8.1 Hz, 2H), 3.19 – 3.09 (m, 1H), 2.78 (dq, *J* = 16.0, 8.0 Hz, 1H), 2.64 (td, *J* = 13.8, 6.9 Hz, 1H), 2.31 (td, *J* = 11.3, 2.7 Hz, 2H), 2.17 (p, *J* = 9.1 Hz, 2H), 2.00 (dq, *J* = 18.0, 9.0 Hz, 1H), 1.88 (dd, *J* = 19.8, 8.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.81, 157.95, 151.40, 133.85, 130.81, 128.72, 128.67, 124.07, 115.21, 99.30, 68.55, 55.02, 52.81, 51.32, 34.73, 29.45, 29.41, 19.02.

2-(2,4-dichlorophenoxy)-*N***-(2-methyl-4-phenylthiazol-5-yl)acetamide (12a).** Prepared using general procedure A. Yield = 15 mg (24%, light yellow solid). LCMS: $R_T = 2.98 \text{ min.}, >95\%$ @ 215 and 254 nm, *m*/*z* = 393.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 7.74 (d, *J* = 7.3 Hz, 2H), 7.63 (d, *J* = 2.5 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39 (dt, *J* = 11.2, 5.0 Hz, 2H), 7.13 (d, *J* = 8.9 Hz, 1H), 4.96 (s, 2H), 2.61 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.45, 159.36, 152.72, 141.40, 134.33, 129.90, 129.11, 128.53, 128.32, 128.12, 127.85, 125.66, 122.87, 115.59, 67.80, 19.17.

2-(2,4-dichlorophenoxy)-*N***-(4-methyl-1,2,5-oxadiazol-3-yl)acetamide (12b).** Prepared using general procedure A. Yield = 29 mg (67%, white solid). LCMS: $R_T = 2.60 \text{ min.}, >95\%$ @ 215 and 254 nm, *m/z* = 302.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 11.02 (s, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.39 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 1H), 5.03 (s, 2H), 2.32 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.25, 152.86, 150.75, 148.73, 129.93, 128.48, 125.66, 122.92, 115.71, 67.56, 8.89.

N-(benzo[*d*]isoxazol-3-yl)-2-(2,4-dichlorophenoxy)acetamide (12c). Prepared using general procedure A. Yield = 29 mg (67%, off-white solid) LCMS: R_T = 2.82 min., >95% @ 215 and 254 nm, *m/z* = 336.9 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 11.41 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.63 (d, *J* = 2.5 Hz, 1H), 7.39 (dt, *J* = 7.1, 4.3 Hz, 2H), 7.17 (d, *J* = 8.9 Hz, 1H), 5.10 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.44, 153.45, 152.99, 131.36, 129.90, 128.50, 125.52, 123.90, 122.86, 116.33, 115.67, 110.40, 67.65.

N-(2-cyclohexyl-6-methylpyridin-3-yl)-2-(2,4-dichlorophenoxy)acetamide (12d). Prepared using general procedure A. Yield = 20 mg (20%, off-white solid). LCMS: $R_T = 2.86 \text{ min.}, >95\%$ @ 215 and 254 nm, *m*/*z* = 393.0 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 8.79 (s, 1H), 8.59 (s, 1H), 7.47 (d, *J* = 2.5 Hz, 1H), 7.27 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 1H), 5.90 (s, 1H), 4.66 (s, 2H), 2.55 (d, *J* = 12.5 Hz, 3H), 2.36 (d, *J* = 1.8 Hz, 2H), 2.15 (dd, *J* = 6.0, 2.6 Hz, 2H), 1.81 – 1.75 (m, 2H), 1.71 – 1.65 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.54, 151.55, 151.03, 130.45, 128.11, 128.04, 124.03, 115.08, 68.95, 28.11, 25.26, 22.47, 21.62.

2,4-dichlorobenzyl (1-cyclohexyl-3-methyl-1*H***-pyrazol-5-yl)carbamate (12e).** Yield = 20 mg (9.0%, white solid). LCMS: R_T = 2.93 min., >95% @ 215 and 254 nm, *m/z* = 382.0 [M + H]⁺. ¹H NMR (499 MHz, CDCl₃) δ 7.43 (s, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 6.80 (s, 1H), 5.96 (s, 1H), 5.27 (s, 2H), 3.88 (m, 1H), 2.24 (s, 3H), 1.87 (m, 5H), 1.68 (m, 1H), 1.36 – 1.21 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 153.71, 147.16, 135.05, 133.74, 132.01, 129.50, 127.28, 64.36, 56.47, 32.67, 25.72, 25.08, 14.06.

N-(1-cyclohexyl-3-methyl-1*H*-pyrazol-5-yl)-2-(2,4-dichlorophenoxy)ethanethioamide (12f). Yield = 10 mg (18%, light brown oil). LCMS: R_T = 4.55 min. (8 min method), >95% @ 215 and 254 nm, *m/z* = 398.0 [M + H]⁺. ¹H NMR (499 MHz, CD₃OD) δ 7.53 (d, *J* = 2.4 Hz, 1H), 7.34 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.17 (d, *J* = 8.9 Hz, 1H), 6.14 (s, 1H), 5.13 (s, 2H), 3.78 – 3.70 (m, 1H), 2.25 (s, 3H), 1.80 (d, *J* = 22.0 Hz, 6H), 1.68 (s, 1H), 1.23 (s, 3H). ¹³C NMR (126 MHz, CD₃OD) δ 152.22, 147.22, 129.83, 127.78, 126.90, 123.69, 115.37, 100.91, 75.56, 56.66, 32.20, 25.32, 24.91, 12.40.

N-(1-cyclohexyl-3-methyl-1*H*-pyrazol-5-yl)-2-(2,4-dichlorophenoxy)-*N*-methylacetamide (12g). Prepared using general procedure A. Yield = 9.4 mg (29%, light yellow oil). LCMS: $R_T = 3.08 \text{ min.}$, >95% (a) 215 and 254 nm, $m/z = 396.1 \text{ [M + H]}^+$. ¹H NMR (499 MHz, CDCl₃) δ 7.38 (d, J = 2.3 Hz, 1H), 7.15 (dd, J = 8.8, 2.3 Hz, 1H), 6.72 (d, J = 8.8 Hz, 1H), 5.94 (s, 1H), 4.61 (d, J = 15.1 Hz, 1H), 4.34 (d, J = 15.1 Hz) Hz, 1H), 3.87 – 3.78 (m, 1H), 3.23 (s, 3H), 2.29 (s, 3H), 2.14 – 2.04 (m, 1H), 2.00 – 1.89 (m, 3H), 1.82 (s, 2H), 1.75 (d, *J* = 11.0 Hz, 1H), 1.41 – 1.41 (m, 1H), 1.42 – 1.27 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.80, 152.71, 148.22, 137.98, 130.30, 127.50, 127.16, 124.53, 115.38, 101.69, 66.99, 56.45, 36.87, 33.72, 32.76, 25.69, 25.65, 24.93, 14.21.

2-(2,4-dichlorophenoxy)-1-(2-methyl-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethan-1-one

(12h). Prepared using general procedure A. Yield =10 mg (8.0%, light brown solid). LCMS: $R_T = 2.63$ min., >95% @ 215 and 254 nm, $m/z = 340.0 [M + H]^+$. ¹H NMR (499 MHz, DMSO- d_6) δ 7.59 (d, J = 2.5 Hz, 1H), 7.33 (dd, J = 8.9, 2.4 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 6.34 (s, 1H), 5.24 (s, 2H), 2.14 (s, 2H), 2.09 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 164.41, 153.04, 129.70, 128.21, 125.12, 122.59, 115.80, 85.53, 67.07, 44.81, 39.33, 21.89, 14.03.

2-(2,4-dichlorophenoxy)-*N***-(1-isopropyl-3-methyl-1***H***-pyrazol-5-yl)acetamide (13a).** Prepared using general procedure A. Yield = 22 mg (47%, white solid). LCMS: $R_T = 2.61 \text{ min.}, >95\%$ @ 215 and 254 nm, $m/z = 342.0 \text{ [M + H]}^+$. ¹H NMR (499 MHz, DMSO- d_6) δ 9.99 (s, 1H), 7.62 (d, J = 2.5 Hz, 1H), 7.40 (d, J = 8.9, 2.5 Hz, 1H), 7.10 (d, J = 8.9 Hz, 1H), 5.96 (s, 1H), 4.91 (s, 1H), 4.44 – 4.36 (m, 1H), 2.12 (s, 1H), 1.30 (d, J = 6.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.55, 152.97, 146.03, 134.55, 129.90, 128.46, 125.57, 122.96, 115.68, 99.32, 67.95, 48.20, 22.78, 14.43.

2-(2,4-dichlorophenoxy)-*N*-(**1-(1,1-dioxidotetrahydro-2***H*-thiopyran-4-yl)-3-methyl-1*H*-pyrazol-5yl)acetamide (13b). Prepared using general procedure A. Yield = 15 mg (32%, white solid). LCMS: R_T = 2.43 min., >95% @ 215 and 254 nm, *m*/*z* = 432.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 8.09 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.64 – 7.54 (m, 2H), 6.03 (s, 1H), 5.83 (s, 1H), 4.52 – 4.46 (m, 1H), 3.30 (d, *J* = 7.2 Hz, 2H), 2.48 – 2.37 (m, 1H), 2.14 (s, 1H), 2.12 (s, 1H), 1.31 – 1.19 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.71, 164.37, 147.07, 134.83, 131.18, 129.82, 126.83, 100.12, 55.27, 51.40, 49.60, 30.24, 22.21, 14.40.

N-(1-cyclohexyl-3-methyl-1*H*-pyrazol-5-yl)-2-(2,4-dichlorophenoxy)acetamide (13c). Prepared using general procedure A. Yield = 26 mg (43%, white solid). LCMS: $R_T = 2.88 \text{ min.}$, >95% @ 215 and 254 nm, *m*/*z* = 382.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 9.97 (s, 1H), 7.63 (d, *J* = 2.4 Hz, 1H), 7.40 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.11 (d, *J* = 8.9 Hz, 1H), 5.97 (s, 1H), 3.93 (dt, *J* = 9.8, 5.3 Hz, 1H), 2.11 (s, 1H), 1.82 – 1.68 (m, 3H), 1.64 (d, *J* = 12.5 Hz, 1H), 1.28 (dd, *J* = 25.0, 12.5 Hz, 1H), 1.16 (dd, *J* = 24.8, 12.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.47, 152.91, 145.89, 134.59, 129.93, 128.47, 125.58, 122.95, 115.59, 99.13, 68.01, 55.54, 32.88, 25.60, 25.39, 14.39.

2-(2,4-dichlorophenoxy)-*N***-(1-(4,4-dimethylcyclohexyl)-3-methyl-1***H***-pyrazol-5-yl)acetamide** (13d). Prepared using general procedure A. Yield = 29 mg (76% off-white solid). LCMS: $R_T = 3.15$ min., >95% @ 215 and 254 nm, *m/z* = 410.1 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 7.64 (d, *J* = 2.2 Hz, 1H), 7.39 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.12 (d, *J* = 8.9 Hz, 1H), 5.96 (s, 1H), 4.90 (s, 2H), 3.84 (t, *J* = 11.6 Hz, 1H), 2.12 (s, 3H), 1.91 (dd, *J* = 24.1, 11.5 Hz, 2H), 1.56 (d, *J* = 11.4 Hz, 2H), 1.43 (d, *J* = 12.8 Hz, 2H), 1.24 (t, *J* = 12.2 Hz, 2H), 0.95 (d, *J* = 9.8 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.56, 152.88, 145.96, 134.67, 129.96, 128.49, 125.58, 122.95, 115.52, 99.34, 68.00, 55.79, 38.31, 32.94, 29.67, 28.58, 24.30, 14.42.

2-(2,4-dichlorophenoxy)-*N*-(**1-(4,4-difluorocyclohexyl)**-**3-methyl**-1*H*-pyrazol-5-yl)acetamide (13e). Prepared using general procedure A. Yield = 36 mg (62%, white solid). LCMS: $R_T = 2.78 \text{ min.}$, >95% @ 215 and 254 nm, *m/z* = 418.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.63 (d, *J* = 2.4 Hz, 1H), 7.41 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 1H), 5.98 (s, 1H), 4.92 (s, 2H), 4.16 (t, *J* = 10.0 Hz, 1H), 2.13 (d, *J* = 5.3 Hz, 2H), 2.12 (s, 3H), 2.04 – 1.92 (m, 3H), 1.86 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.82, 152.95, 146.45, 135.02, 129.95, 128.48, 125.62, 122.97, 115.66, 99.77, 67.91, 52.78, 32.41, 28.66, 28.58, 14.39.

2-(2,4-dichlorophenoxy)-N-(3-methyl-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-5-yl)acetamide

(13f). Prepared using general procedure A. Yield = 40 mg (63%, white solid). LCMS: $R_T = 2.47$ min.,

>95% @ 215 and 254 nm, *m/z* = 384.0 [M + H]⁺. ¹H NMR (499 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.41 (dd, J = 8.9, 2.4 Hz, 1H), 7.12 (d, J = 8.9 Hz, 1H), 5.99 (s, 1H), 4.92 (s, 2H), 4.92 (s, 2H), 4.24 - 4.15 (m, 1H), 3.95 (dd, J = 11.3, 3.8 Hz, 2H), 3.41 - 3.34 (m, 2H), 2.12 (s, 3H), 2.01 - 1.92 (m, 2H), 1.69 (d, J = 10.7 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.63, 152.93, 146.31, 134.87, 129.96, 128.50, 125.60, 122.96, 115.61, 99.49, 67.97, 66.74, 52.83, 32.91, 14.41.

Materials and Methods for in vitro Pharmacology

Thallium flux assays were preformed essentially as previously described (Ref. 9). Briefly, HEK-293 cells expressing either GIRK1 and GIRK2 or GIRK1 and GIRK4 were cultured in a-MEM (Corning, Corning, NY) containing 10% (v/v) fetal bovine serum (Thermo Fisher Scientific, Waltham, MA) plus 1x glutagro (Corning, Corning, NY) (referred to hereafter as cell culture medium) at 37 °C in a humidified 5% CO2 atmosphere. Cells at ~90% confluence were dislodged from the tissue culture vessel using TrypLE Express (Thermo Fisher Scientific, Waltham, MA) and plated at a density of 20,000 cells/well in 20 ml/well cell culture medium in 384-well, clear-bottom, black-walled, BD PureCoat Amine plates (Corning, Corning, NY) and incubated over night at 37 °C in a humidified 5% CO2 atmosphere. On the day of assay the medium was removed from the plates and replaced with 20 µl/well of a solution containing assay buffer (Hanks Buffered Saline Solution (Thermo Fisher Scientific, Waltham, MA) plus 10 mM HEPES (Thermo Fisher Scientific, Waltham, MA)-NaOH, pH 7.2), 1 µM Thallos (TEFlabs, Austin, TX), 0.5% DMSO and 0.036% Pluronic F-127 (Sigma-Aldrich, St. Louis, MO). Cell plates containing Thallos solution were incubated 1 hour at room temperature. Following incubation, the Thallos- containing solution was replaced with 20 µl/well assay buffer. The Thallos-loaded cell plates were transferred to a Panoptic kinetic imaging plate reader (WaveFront Biosciences, Franklin, TN). Images acquired at 1 Hz, 480/40 nm excitation and 538/40 nm emission were collected for 10 seconds after which time 20 ul/well of assay buffer containing test compounds at 2-fold over their final concentrations were added. Imaging continued for four minutes at which time 10 ml/well of a solution containing 125 mM NaHCO₃, 1.8 mM CaSO₄, 1 mM MgSO₄, 5 mM glucose, and 2 mM Tl₂SO₄, 10 mM HEPES-NaOH pH 7.2 was added and images were collected for an additional 2 minutes. To quantify test compound effects on GIRK activity, the initial slopes of the thalliumevoked changes in fluorescence were fit to a four-parameter logistic equation using the Excel (Microsoft, Redmond, WA) plugin XLfit (IDBS, Guildford, UK) to obtain potency and efficacy values. Efficacies are relative to a maximally effective concentration of our standard compound, VU551, our most potent and effective activator which shows low selectivity between GIRK1/2 and GIRK1/4 channels. Ten-point concentration series from 30 µM to 1.5 nM were generated using an Echo liquid handler (Labcyte, San Jose, CA). Final DMSO concentration, 0.24% (v/v), in the assay was constant across all compound concentrations. Unless otherwise indicated, all buffer salts were obtained from Sigma-Aldrich, St. Louis, MO.

Figure 1. Metabolite ID study in human and mouse liver microsomes

Table 1. Metabolite ID Study in mouse and human liver microsomes with NADPH at 0 and 60 min.

MLM	0 min	60 min
Parent	97.4%	0.6%
M1	2.6%	95.4%
HLM	0 min	60 min
Parent	99.9%	54.8%
M1	0.1%	18.3%

SS-C-33 is highly metabolized in mouse liver microsomes and moderately metabolized in human liver microsomes. At 60 min of incubation, the metabolite M1 (amide hydrolysis) was the largest component in MLM and the parent was the largest component in HLM. The amide hydrolysis in MLM was independent of NADPH. All other oxidative metabolites are present in <2% at 60 mins.

Cmpd	SS-C-33,	CDA-B-	SS-C-48,	SS-D-104,	SS-D-82,
-	11a	78A, 11y	13a	13e	13f
GIRK1/2 (nM)	131	233	133	33	88
Receptor ¹		EC ₅₀	(mM), % Effic	acy	
Kv2.1					
Kv2.1/6.4	-				
Kv2.1/9.1	-	> 20	> 20		> 20
Kv2.1/8.2		>30	>30		>30
Kv7.2					
Kv2.2					
hERG	>30	21.1, -77	40.1, -59	>30	29.5, -21
KCNMA1/B4		>30	>30]	
SLACK	-	33.5, 42.1	61.4, 12.9]	
SLACK-	-	>20			>20
A934T		~30	>20		>30
SLICK		17.8, -132	/ / / /		
Kir6.2		>30			
¹ Selectivity deter	mined at Vander	bilt University			
PDSP Selectivity	y				
11a					
Receptor	Mean % inhi	bition at 10 mN	Л		
5-HT1A	-0.21				
5-HT1B	10.12				
5-HT1D	4.33				
5-HT1E	17.55				
5-HT2A	-1.46				
5-HT2B	45.66				
5-HT2C	6.81				
5-HT3	-1.19				
5-HT5A	-24.61				
5-HT6	-6.99				
5-HT7A	2	-			
Alpha1A	4.23	-			
Alpha1B	5.89	-			
Alpha1D	-1.23	-			
Alpha2A	22.98	-			
Alpha2B	6.14	-			
Alpha2C	-1.19	-			
Betal	11.56	-			
Beta2	-8.4	-			
Beta3	-2.45	-			
BZP Rat Brain	33.66				
DI	0.04	-			
D1 D2	9.94	-			
D2	-9.11	-			
D3	-0.24	-			
D4 D5	-0.20	-			
DJ	9.46	-			
DOR	4.44	-			
GABAA	-10.87	1			
H1	0.12	1			
H2	-4.02	1			
H3	6.45	1			
H4	-3 56	1			
KOR	29.85	1			
MI	0.51	1			
M2	8.82	1			
	5.02	1			

Table 2. Selectivity profile against closely related ion channels and the PDSP CNS panel.

M3	6.89
M4	39.14
M5	9.29
MOR	20.43
NET	44.18
PBR	-7.95
SERT	-0.61
Sigma 1	33.73
Sigma 2	17.4