SUPPORTING INFORMATION

Identification of the first structurally validated covalent ligands of the small GTPase RAB27A

Mostafa Jamshidiha, ${ }^{[a, b] \#}$ Thomas Lanyon-Hogg, ${ }^{[a, b] \#}$ Charlotte L. Sutherell, ${ }^{[b]}$ Gregory Craven, ${ }^{[a]}$ Montse Tersa, ${ }^{[a]}$ Elena De Vita, ${ }^{[b]}$ Delia Brustur, ${ }^{[b]}$ Inmaculada Pérez-Dorado, ${ }^{[a]}$ Sarah Hassan, ${ }^{[b]}$ Rita Petracca, ${ }^{[b]}$ Rhodri M. Morgan, ${ }^{[a]}$ Máximo Sanz-Hernández, ${ }^{[a]}$ Jim C. Norman, ${ }^{[c]}$ Alan Armstrong, ${ }^{[b]}$ David J. Mann, ${ }^{[a]}$ Ernesto Cota, ${ }^{[a]}$ and Edward W. Tate*[b]
[a] Dr M. Jamshidiha, Dr M. Tersa, Dr I. Perez-Dorado, Dr G. B. Craven, Dr R. M. Morgan, Dr M. Sanz-Hernández, Dr D. J. Mann, Dr E. Cota Department of Life Sciences
mperial College London
London, SW7 2AZ, UK
Email: e.cota@imperial.ac.uk
[b] Dr T. Lanyon-Hogg, Dr C. L. Sutherell, Dr E. De Vita, D. Brustur, S. Hassan, Dr R. Petracca, Prof A. Armstrong, Prof E. W. Tate Department of Chemistry
mperial College London
London, W12 0BZ, UK
Email: e.tate@imperial.ac.uk
[c] Prof J. C. Norman
Beatson Institute for Cancer Research
Garscube Estate
Glasgow G61 1BD, UK
\# These authors contributed equally

Keywords: Rab27A, Protein-Protein interactions, Ligand screening, Covalent inhibitors, X-ray crystallography,
SUPPORTING INFORMATION 1
Supplementary Figures 3
Figure S1 3
Figure S2 4
Figure S3 5
Figure S4 14
Figure S5 15
Figure S6 16
Figure S7 17
Figure S8 18
Supplementary Tables 19
Table S1 19
Table S2 20
Table S3 21
Table S4 22
Materials and Methods 23
Protein expression and purification 23
Protein labelling and purification 23
Protein crystallisation 24
Molecular dynamics simulations 24
qIT assay for screening and hit validation 24
qIT assay for kinat $^{\prime} / K_{l}$ determination 25
Peptide mass fingerprint analysis 25
Chemical Synthesis 26
Abbreviations 26
General Information 26
Scheme S1. Synthesis of hit fragment A01 26
Scheme S2. Synthesis of hit fragment B01 29
NMR spectra for A01 and B01 32
Supplementary References 37

Supplementary Figures

Figure S1. Evaluating Rab27A (PDB: 3BC1, chain A) hotspots using FTMap server. ${ }^{1}$ This server identifies binding pockets within a protein surface by evaluating binding energy of molecules with different physicochemical properties. A) and B) demonstrate that organic molecule clusters predominantly occupy the nucleotide binding site and the WF pocket.

Figure S2. Last purification step for fRab27A-C188. Size-exclusion chromatography (SEC) fractions A 10 to B 8 were pooled to obtain pure recombinant protein. Gel lanes: 1. ladder; 2. SEC input; SEC fractions: 3. A8; 4. A9; 5. A10; 6. A11; 7. B1; 8. B3; 9. B4; 10. B5; 11. B6; 12. B7; 13. B8; 14. B9; 15. B10.

A

BMD-11

B

Nexinhib 20

Figure S3. Structure of reported Rab27A non-covalent inhibitors: BMD-11 ${ }^{2}$ and Nexinhib 20^{3}. Motifs commonly associated with PAINS are highlighted in blue, such as catechols and vinyl ketones. ${ }^{4}$

RAB27A		0
RAB27B		0
RAB24		0
RAB6C		0
RAB6D	---	0
RAB6A		0
RAB6B		0
RAB17	----MAQ	3
RAB21	----MAA	3
RAB5B	-MT	2
RAB5A	-MA	2
RAB5C	-MAG-	3
RAB22A		0
RAB22B (31)		0
RAB20		0
RAB28		0
RAB29		0
RAB32	---MAGGGAGDPG-----LG	12
RAB38		0
RAB34		0
RAB36	MVIAGASWMLGRAAA--SPTQTPPTTSTIRVARRSRVALVAMVIAAAGSGGPGRAEPQLS	58
RAB42		0
RAB39A		0
RAB39B	---	0
RAB7B		0
RAB7A		0
RAB9A		0
RAB9B	------------	0
RAB23		0
RAB40C		0
RAB40B		0
RAB40A		0
RAB40AL		0
RAB33A	----MAQPILGHGSLQPA----S	15
RAB33B	----MAEEMES--SLE-A----S	12
RAB30		0
RAB19	-------------------------------	0
RAB43		0
RAB18	---------	0
RAB2A		0
RAB2B		0
RAB14		0
RAB4A		0
RAB4B	--------------------------------------	0
RAB25	-----------	0
RAB11A		0
RAB11B		0
RAB12	---MDPG-----AALQRRAGGGGGLGAGSPALS	25
RAB26	--MSRKKTPKSKGASTPAASTLPTANG-----ARPARS--GTALSGPDAPPNG	44
RAB37	MTGTPG-----AVATRD--GE------APERS	19
RAB3D	--M	1
RAB3B	--M	1
RAB3A	---M	1
RAB3C	---MRHEAPMQM	9
RAB15		0
RAB13		0
RAB10		0
RAB8A		0
RAB8B		0
RAB35		0
RAB1A		0
RAB1B		0

RAB27A	-MSDG	4
RAB27B	-MTDG	4
RAB24	-MS	2
RAB6C	--------MSAGGDFG	8
RAB6D	-------MSAGGDFG	8
RAB6A	-------MSTGGDFG	8
RAB6B	--MSAGGDFG	8
RAB17	----AHR--TPQPRAAP	14
RAB21	-----AGG--GGGGAAAA	14
RAB5B	---SRSTARPNGQPQA	15
RAB5A	-----SRGATRPNGPNTG	15
RAB5C	----RGGAARPNGPAAG	16
RAB22A		0
RAB22B(31)		0
RAB20		0
RAB28	--------MSDSEEE	7
RAB29	--------------MG	2
RAB32	-----AAAAPAPE	20
RAB38	---MQAP	4
RAB34	----MNILAPVRRDRVLAELPQCLRKEAALHGHKDFHPRVTCACQEHRTGT	47
RAB36	QPSLDCGRMRSSLTPLGPPVSRDRVIASFPKWYTPEACLQLREHFHGQVSAACQRRNTGT	118
RAB42	--MEAE	4
RAB39A	------MET	3
RAB39B	----------MEA	3
RAB7B	-----MNP	3
RAB7A	------MTS	3
RAB9A	------MA	2
RAB9B	------------MS	2
RAB23	---------MLEE	4
RAB40C	MG--SQGSPVK	9
RAB40B	MS--ALGSPVR	9
RAB40A	MS--APGSPDQ	9
RAB40AL	MS--APGSPDQ	9
RAB33A	AAGLASLEL---DSSLDQY	31
RAB33B	FSSSGAVSG---ASGFLPP	28
RAB30	--MSME	4
RAB19	--MHFSS--SARAADE	12
RAB43	-MAGPGP--GPGDPDE	13
RAB18	------MDE	3
RAB2A	-M	1
RAB2B	-M	1
RAB14	---MATAPY	6
RAB4A	---SQTAMSE	8
RAB4B	-MAE	3
RAB25	-----MGNGTEE	7
RAB11A	------MGTRDD	6
RAB11B	----MGTRDD	6
RAB12	--GGQGR---RRKQPPR	37
RAB26	--PLQPGRP---SLGGGVD	58
RAB37	-------PCSP	24
RAB3D	ASAGDTQAG--PRDAADQ	17
RAB3B	ASVTDGKTG--V--VEDASDQ	17
RAB3A	ASATDSRYG---QKESSDQ	17
RAB3C		25
RAB15	-----MAK	3
RAB13	---MAK	3
RAB10	---MAKK	4
RAB8A	---MAK	3
RAB8B	--MAK	3
RAB35	-----MAR	3
RAB1A	--MSSMNP	6
RAB1B	--MNP	3

AB15

DYDYLIKFLALGDSGVGKTSVLYQYTDGKFN-S----KFITTVGIDFREKRVVYRASGPD 59 DYDYLIKLLALGDSGVGKTTFLYRYTDNKFN-P----KFITTVGIDFREKRVVYNAQGPN 59

GQRVDVKVVMLGKEYVGKTSLVERYVHDRFLVG----PYQNTIGAAFVAKVMCV------- 52
NPLRKFKLVFLGEQSVAKTSLITRFRYDSFD-N----TYQAIIGIDFLSKTMYL------- 57
NPLRKFKLVFLGEQSVAKTSLITRFRYDSFD-N----TYQAIIGIDFLSKTMYL------ 57
NPLRKFKLVFLGEQSVGKTSLITRFMYDSFD-N----TYQATIGIDFLSKTMYL------ 57
NPLRKFKLVFLGEQSVGKTSLITRFMYDSFD-N----TYQATIGIDFLSKTMYL------- 57
SQPRVFKLVLLGSGSVGKSSLALRYVKNDFK-S-----ILPTVGCAFFTKVVDV------ 62
GRAYSFKVVLLGEGCVGKTSLVLRYCENKFN-D----KHITTLQASFLTKKLNI------ 63
SKICQFKLVLLGESAVGKSSLVLRFVKGQFH-E----YQESTIGAAFLTQSVCL------ 64
NKICQFKLVLLGESAVGKSSLVLRFVKGQFH-E----FQESTIGAAFLTQTVCL------- 64
NKICQFKLVLLGESAVGKSSLVLRFVKGQFH-E----YQESTIGAAFLTQTVCL------- 65
MALRELKVCLLGDTGVGKSSIVWRFVEDSFD-P----NINPTIGASFMTKTVQY------ 49
MAIRELKVCLLGDTGVGKSSIVCRFVQDHFD-H----NISPTIGASFMTKTVPC------ 49
MRKPDSKIVLLGDMNVGKTSLLQRYMERRFP------DTVSTVGGAFYLKQWRS------ 48
SQDRQLKIVVLGDGASGKTSLTTCFAQETFG-K----QYKQTIGLDFFLRRITL------- 56
SRDHLFKVLVVGDAAVGKTSLVQRYSQDSFS-K----HYKSTVGVDFALKVLQW------- 51
TREHLFKVLVIGELGVGKTSIIKRYVHQLFS-Q----HYRATIGVDFALKVLNW------ 69
HKEHLYKLLVIGDLGVGKTSIIKRYVHQNFS-S----HYRATIGVDFALKVLHW------ 53
VGFKISKVIVVGDLSVGKTCLINRFCKDTFD-K----NYKATIGVDFEMERFEV------ 96
VGLKLSKVVVVGDLYVGKTSLIHRFCKNVFD-R----DYKATIGVDFEIERFEI------ 167
GCRYQFRVALLGDAAVGKTSLLRSYVAGAPGAPEPEPEPEPTVGAECYRRALQL------ 58
IWIYQFRLIVIGDSTVGKSCLLHRFTQGRFPG-LRSPACDPTVGVDFFSRLLEI------ 56
IWLYQFRLIVIGDSTVGKSCLIRRFTEGRFAQ-V----SDPTVGVDFFSRLVEI------ 52
RKKVDLKLIIVGAIGVGKTSLLHQYVHKTFY-E----EYQTTLGASILSKIIIL------ 52
RKKVLLKVIILGDSGVGKTSLMNQYVNKKFS-N----QYKATIGADFLTKEVMV------ 52
GKSSLFKVILLGDGGVGKSSLMNRYVTNKFD-T----QLFHTIGVEFLNKDLEV------ 51
GKSLLLKVILLGDGGVGKSSLMNRYVTNKFD-S----QAFHTIGVEFLNRDLEV------ 51
DMEVAIKMVVVGNGAVGKSSMIQRYCKGIFT-K----DYKKTIGVDFLERQIQV------ 53
SYDYLLKFLLVGDSDVGKGEILESLQDGAAE-S----PYAYSNGIDYKTTTILL------ 58
AYDFLLKFLLVGDSDVGKGEILASLQDGAAE-S----PYGHPAGIDYKTTTILL------ 58
AYDFLLKFLLVGDRDVGKSEILESLQDGAAE-S----PYSHLGGIDYKTTTILL------ 58
AYDFLLKFLLVGDRDVGKSEILESLQDGTAE-S----PYSHLGGIDYKTTTILL------- 58
VQIRIFKIIVIGDSNVGKTCLTFRFCGGTFP-D----KTEATIGVDFREKTVEI------ 80
ARSRIFKIIVIGDSNVGKTCLTYRFCAGRFP-D----RTEATIGVDFRERAVEI------ 77
DYDFLFKIVLIGNAGVGKTCLVRRFTQGLFP-P----GQGATIGVDFMIKTVEI------ 53
NFDYLFKIILIGDSNVGKTCVVQHFKSGVYT-E----TQQNTIGVDFTVRSLDI------ 61
QYDFLFKLVLVGDASVGKTCVVQRFKTGAFS-E----RQGSTIGVDFTMKTLEI------- 62
DVLTTLKILIIGESGVGKSSLLLRFTDDTFD-P----ELAATIGVDFKVKTISV------ 52
AYAYLFKYIIIGDTGVGKSCLLLQFTDKRFQ-P----VHDLTIGVEFGARMITI------ 50
TYAYLFKYIIIGDTGVGKSCLLLQFTDKRFQ-P----VHDLTIGVEFGARMVNI------ 50
NYSYIFKYIIIGDMGVGKSCLLHQFTEKKFM-A----DCPHTIGVEFGTRIIEV------ 55
TYDFLFKFLVIGNAGTGKSCLLHQFIEKKFK-D----DSNHTIGVEFGSKIINV------ 57
TYDFLFKFLVIGSAGTGKSCLLHQFIENKFK-Q----DSNHTIGVEFGSRVVNV------ 52
DYNFVFKVVLIGESGVGKTNLLSRFTRNEFS-H----DSRTTIGVEFSTRTVML------- 56
EYDYLFKVVLIGDSGVGKSNLLSRFTRNEFN-L----ESKSTIGVEFATRSIQV------ 55
EYDYLFKVVLIGDSGVGKSNLLSRFTRNEFN-L----ESKSTIGVEFATRSIQV------ 55
PADFKLQVIIIGSRGVGKTSLMERFTDDTFC-E----ACKSTVGVDFKIKTVEL------ 86
FYDVAFKVMLVGDSGVGKTCLLVRFKDGAFLAG----TFISTVGIDFRNKVLDV------ 108
SYDLTGKVMLLGDTGVGKTCFLIQFKDGAFLSG----TFIATVGIDFRNKVVTV------ 74
NFDYMFKLLLIGNSSVGKTSFLFRYADDSFT-P----AFVSTVGIDFKVKTVYR------ 66
NFDYMFKLLIIGNSSVGKTSFLFRYADDTFT-P----AFVSTVGIDFKVKTVYR------- 66
NFDYMFKILIIGNSSVGKTSFLFRYADDSFT-P----AFVSTVGIDFKVKTIYR------ 66
NFDYMFKLLIIGNSSVGKTSFLFRYADDSFT-S----AFVSTVGIDFKVKTVFK------ 74
QYDVLFRLLLIGDSGVGKTCLLCRFTDNEFH-S----SHISTIGVDFKMKTIEV------ 52
AYDHLFKLLLIGDSGVGKTCLIIRFAEDNFN-N----TYISTIGIDFKIRTVDI------- 52
TYDLLFKLLLIGDSGVGKTCVLFRFSDDAFN-T----TFISTIGIDFKIKTVEL------ 53
TYDYLFKLLLIGDSGVGKTCVLFRFSEDAFN-S----TFISTIGIDFKIRTIEL------ 52
TYDYLFKLLLIGDSGVGKTCLLFRFSEDAFN-T----TFISTIGIDFKIRTIEL------ 52
DYDHLFKLLIIGDSGVGKSSLLLRFADNTFS-G----SYITTIGVDFKIRTVEI------ 52
EYDYLFKLLLIGDSGVGKSCLLLRFADDTYT-E----SYISTIGVDFKIRTIEL------- 55
EYDYLFKLLLIGDSGVGKSCLLLRFADDTYT-E----SYISTIGVDFKIRTIEL------ 52

RAB27A
RAB27B
RAB24
RAB6C
RAB6D
RAB6A
RAB6B
RAB17
RAB21
RAB5B
RAB5A
RAB5C
RAB22A
RAB22B(31)
RAB20
RAB28
RAB29
RAB32
RAB38
RAB34
RAB36
RAB42
RAB39A
RAB39B
RAB7B
RAB7A
RAB9A
RAB9B
RAB23
RAB40C
RAB40B
RAB40A RAB40AL
RAB33A
RAB33B
RAB30
RAB19
RAB43
RAB18
RAB2A
RAB2B
RAB14
RAB4A
RAB4B
RAB25
RAB11A
RAB11B
RAB12
RAB26
RAB37
RAB3D
RAB3B
RAB3A
RAB3C
RAB15
RAB13
RAB10
RAB8A
RAB8B
RAB35
RAB1A
RAB1B

GATGRGQRIHLQLWDTAGQERFR-SLTTAFFRDAMGFLLLFDLTNEQSFLNVRNWISQLQ GSSGKAFKVHLQLWDTAGQERFR-SLTTAFFRDAMGFLLMFDLTSQQSFLNVRNWMSQLQ
----GDRTVTLGIWDTAGSERYE-AMSRIYYRGAKAAIVCYDLTDSSSFERAKFWVKELR ----EDGTIGLRLWDTAGQERLR-SLIPRYIRDSAAAVVVYDITNVNSFQQTTKWIDDVR ----EDGTIGLRLWDTAGQERLR-SLIPRYIRDSAAAVVVYDITNVNSFQQTTKWIDDVR ----EDRTVRLQLWDTAGQERFR-SLIPSYIRDSTVAVVVYDITNVNSFQQTTKWIDDVR ----EDRTVRLQLWDTAGQERFR-SLIPSYIRDSTVAVVVYDITNLNSFQQTSKWIDDVR ----GATSLKLEIWDTAGQEKYH-SVCHLYFRGANAALLVYDITRKDSFLKAQQWLKDLE ----GGKRVNLAIWDTAGQERFH-ALGPIYYRDSNGAILVYDITDEDSFQKVKNWVKELR ----DDTTVKFEIWDTAGQERYH-SLAPMYYRGAQAAIVVYDITNQETFARAKTWVKELQ ----DDTTVKFEIWDTAGQERYH-SLAPMYYRGAQAAIVVYDITNEESFARAKNWVKELQ ----DDTTVKFEIWDTAGQERYH-SLAPMYYRGAQAAIVVYDITNTDTFARAKNWVKELQ ----QNELHKFLIWDTAGQERFR-ALAPMYYRGSAAAIIVYDITKEETFSTLKNWVKELR ----GNELHKFLIWDTAGQERFH-SLAPMYYRGSAAAVIVYDITKQDSFYTLKKWVKELK ---------YNISIWDTAGREQFH-GLGSMYCRGAAAIILTYDVNHRQSLVELEDRFLGLT ---PGNLNVTLQIWDIGGQTIGG-KMLDKYIYGAQGVLLVYDITNYQSFENLEDWYTVVK ---SDYEIVRLQLWDIAGQERFT-SMTRLYYRDASACVIMFDVTNATTFSNSQRWKQDLD ---DSRTLVRLQLWDIAGQERFG-NMTRVYYKEAVGAFVVFDISRSSTFEAVLKWKSDLD ---DPETVVRLQLWDIAGQERFG-NMTRVYYREAMGAFIVFDVTRPATFEAVAKWKNDLD ----LGIPFSLQLWDTAGQERFK-CIASTYYRGAQAIIIVFNLNDVASLEHTKQWLADAL ----AGIPYSLQIWDTAGQEKFK-CIASAYYRGAQVIITAFDLTDVQTLEHTRQWLEDAL ---RAGPRVKLQLWDTAGHERFR-CITRSFYRNVVGVLLVFDVTNRKSFEHIQDWHQEVM ---EPGKRIKLQLWDTAGQERFR-SITRSYYRNSVGGFLVFDITNRRSFEHVKDWLEEAK ---EPGKRIKLQIWDTAGQERFR-SITRAYYRNSVGGLLLFDITNRRSFQNVHEWLEETK ----GDTTLKLQIWDTGGQERFR-SMVSTFYKGSDGCILAFDVTDLESFEALDIWRGDVL ----DDRLVTMQIWDTAGQERFQ-SLGVAFYRGADCCVLVFDVTAPNTFKTLDSWRDEFL ----DGHFVTMQIWDTAGQERFR-SLRTPFYRGSDCCLLTFSVDDSQSFQNLSNWKKEFI ----DGRFVTLQIWDTAGQERFK-SLRTPFYRGADCCLLTFSVDDRQSFENLGNWQKEFI ----NDEDVRLMLWDTAGQEEFD-AITKAYYRGAQACVLVFSTTDRESFEAVSSWREKVV ----DGRRVKLELWDTSGQGRFC-TIFRSYSRGAQGILLVYDITNRWSFDGIDRWIKEID ----DGRRVKLQLWDTSGQGRFC-TIFRSYSRGAQGVILVYDIANRWSFDGIDRWIKEID -----DGQRVKLKLWDTSGQGRFC-TIFRSYSRGAQGVILVYDIANRWSFEGMDRWIKKIE -----DGQRVKLKLWDTSGQGRFC-TIFRSYSRGAQGVILVYDIANRWSFEGMDRWIKKIE ----EGEKIKVQVWDTAGQERFRKSMVEHYYRNVHAVVFVYDVTKMTSFTNLKMWIQECN ----DGERIKIQLWDTAGQERFRKSMVQHYYRNVHAVVFVYDMTNMASFHSLPSWIEECK ----NGEKVKLQIWDTAGQERFR-SITQSYYRSANALILTYDITCEESFRCLPEWLREIE ----DGKKVKMQVWDTAGQERFR-TITQSYYRSAHAAIIAYDLTRRSTFESIPHWIHEIE ----QGKRVKLQIWDTAGQERFR-TITQSYYRSANGAILAYDITKRSSFLSVPHWIEDVR ----DGNKAKLAIWDTAGQERFR-TLTPSYYRGAQGVILVYDVTRRDTFVKLDNWLNELE ----DGKQIKLQIWDTAGQESFR-SITRSYYRGAAGALLVYDITRRDTFNHLTTWLEDAR ----DGKQIKLQIWDTAGQESFR-SITRSYYRGAAGALLVYDITRRETFNHLTSWLEDAR ----SGQKIKLQIWDTAGQERFR-AVTRSYYRGAAGALMVYDITRRSTYNHLSSWLTDAR ----GGKYVKLQIWDTAGQERFR-SVTRSYYRGAAGALLVYDITSRETYNALTNWLTDAR ----GGKTVKLQIWDTAGQERFR-SVTRSYYRGAAGALLVYDITSRETYNSLAAWLTDAR ----GTAAVKAQIWDTAGLERYR-AITSAYYRGAVGALLVFDLTKHQTYAVVERWLKELY ----DGKTIKAQIWDTAGQERYR-AITSAYYRGAVGALLVYDIAKHLTYENVERWLKELR ----DGKTIKAQIWDTAGQERYR-AITSAYYRGAVGALLVYDIAKHLTYENVERWLKELR ----RGKKIRLQIWDTAGQERFN-SITSAYYRSAKGIILVYDITKKETFDDLPKWMKMID ----DGVKVKLQMWDTAGQERFR-SVTHAYYRDAHALLLLYDVTNKASFDNIQAWLTEIH ----DGVRVKLQIWDTAGQERFR-SVTHAYYRDAQALLLLYDITNKSSFDNIRAWLTEIH ----HDKRIKLQIWDTAGQERYR-TITTAYYRGAMGFLLMYDIANQESFAAVQDWATQIK ----HEKRVKLQIWDTAGQERYR-TITTAYYRGAMGFILMYDITNEESFNAVQDWATQIK ----NDKRIKLQIWDTAGQERYR-TITTAYYRGAMGFILMYDITNEESFNAVQDWSTQIK ----NEKRIKLQIWDTAGQERYR-TITTAYYRGAMGFILMYDITNEESFNAVQDWSTQIK ----DGIKVRIQIWDTAGQERYQ-TITKQYYRRAQGIFLVYDISSERSYQHIMKWVSDVD ----EGKKIKLQVWDTAGQERFK-TITTAYYRGAMGIILVYDITDEKSFENIQNWMKSIK ----QGKKIKLQIWDTAGQERFH-TITTSYYRGAMGIMLVYDITNGKSFENISKWLRNID ----DGKRIKLQIWDTAGQERFR-TITTAYYRGAMGIMLVYDITNEKSFDNIRNWIRNIE ----DGKKIKLQIWDTAGQERFR-TITTAYYRGAMGIMLVYDITNEKSFDNIKNWIRNIE ----NGEKVKLQIWDTAGQERFR-TITSTYYRGTHGVIVVYDVTSAESFVNVKRWLHEIN ----DGKTIKLQIWDTAGQERFR-TITSSYYRGAHGIIVVYDVTDQESFNNVKQWLQEID ----DGKTIKLQIWDTAGQERFR-TITSSYYRGAHGIIVVYDVTDQESYANVKQWLQEID

RAB27A	MHAYC---ENPDIVLCGNKSDLED----QRVV-KEEE-	147
RAB27B	ANAYC---ENPDIVLIGNKADLPD----QREV-NERQ-	147
RAB24	SLEEG-----CQIYLCGTKSDLLEEDRRRRRV-DFHD	138
RAB6C	TERGS----DVIITLVGNRTDLAD----KRQV-SVEE	140
RAB6D	TEGGS----DVIITLVGNKTDLAD----KRQV-SIEE	140
RAB6A	TERGS----DVIIMLVGNKTDLAD----KRQV-SIEE	140
RAB6B	TERGS----DVIIMLVGNKTDLAD----KRQI-TIEE	140
RAB17	EELHP---GEVLVMLVGNKTDLSQ----EREV-TFQE	146
RAB21	KMLGN----EICLCIVGNKIDLEK----ERHV-SIQE	146
RAB5B	RQASP----SIVIALAGNKADLAN----KRMV-EYEE	147
RAB5A	RQASP----NIVIALSGNKADLAN----KRAV-DFQE	147
RAB5C	RQASP----NIVIALAGNKADLAS----KRAV-EFQE	148
RAB22A	QHGPP----NIVVAIAGNKCDLID----VREV-MERD	132
RAB22B (31)	EHGPE----NIVMAIAGNKCDLSD----IREV-PLKD-	132
RAB20	DTASK----DCLFAIVGNKVDLTE----EGAL-AGQEKEECSPNMDAGDRVSPRAPKQVQ	150
RAB28	KVSEE-SETQPLVALVGNKIDLEH----MRTI-KPEK	143
RAB29	SKLTLPNGEPVPCLLLANKCDLSP----WAV--SRDQ-	138
RAB32	SKVHLPNGSPIPAVLLANKCDQNK----DSSQ-SPSQ-	157
RAB38	SKLSLPNGKPVSVVLLANKCDQGK----DVLMNNGLK-	142
RAB34	KENDP---SSVLLFLVGSKKDLST----PAQY-ALMEKD	182
RAB36	RENEA---GSCFIFLVGTKKDLLS----GAAC-EQAEAD	253
RAB42	ATQGP---DKVIFLLVGHKSDLQS----TRCV-SAQE	143
RAB39A	MYVQP---FRIVFLLVGHKCDLAS----QRQV-TREE	141
RAB39B	VHVQP---YQIVFVLVGHKCDLDT----QRQV-TRHE	137
RAB7B	AKIVP-MEQSYPMVLLGNKIDLA-----DRKV-PQEV-	137
RAB7A	IQASPRDPENFPFVVLGNKIDLE-----NRQV-ATKR	138
RAB9A	YYADVKEPESFPFVILGNKIDIS-----ERQV-STEE	137
RAB9B	YYADVKDPEHFPFVVLGNKVDKE-----DRQV-TTEE	137
RAB23	AEVG-----DIPTVLVQNKIDLLD----DSCI-KNEE	135
RAB40C	EHAP-----GVPRILVGNRLHLAF----KRQV-PTEQ-	140
RAB40B	EHAP-----GVPKILVGNRLHLAF----KRQV-PTEQ-	140
RAB40A	EHAP-----GVPKILVGNRLHLAF----KRQV-PREQ-	140
RAB40AL	EHAP-----GVPKILVGNRLHLAF----KRQV-PREQ	140
RAB33A	GHAVP---PLVPKVLVGNKCDLRE----QIQV-PSNL	165
RAB33B	QHLLA---NDIPRILVGNKCDLRS----AIQV-PTDL	162
RAB30	QYASN----KVITVLVGNKIDLAE----RREV-SQQR	136
RAB19	KYGAA----NVVIMLIGNKCDLWE----KRHV-LFED	144
RAB43	KYAGS----NIVQLLIGNKSDLSE----LREV-SLAE	145
RAB18	TYCTR---NDIVNMLVGNKIDKE-----NREV-DRNE	135
RAB2A	QHSNS----NMVIMLIGNKSDLES----RREV-KKEE	133
RAB2B	QHSSS----NMVIMLIGNKSDLES----RRDV-KREE	133
RAB14	NLTNP----NTVIILIGNKADLEA----QRDV-TYEE	138
RAB4A	MLASQ----NIVIILCGNKKDLDA----DREV-TFLE	140
RAB4B	TLASP----NIVVILCGNKKDLDP----EREV-TFLE-	135
RAB25	DHAEA----TIVVMLVGNKSDLSQ----AREV-PTEE	139
RAB11A	DHADS----NIVIMLVGNKSDLRH----LRAV-PTDE	138
RAB11B	DHADS----NIVIMLVGNKSDLRH----LRAV-PTDE-	138
RAB12	KYASE----DAELLLVGNKLDCET----DREI-TRQQ	169
RAB26	EYAQH----DVALMLLGNKVDSAH----ERVV-KRED-	191
RAB37	EYAQR----DVVIMLLGNKADMSS----ERVI-RSED-	157
RAB3D	TYSWD----NAQVILVGNKCDLED----ERVV-PAED	149
RAB3B	TYSWD----NAQVILVGNKCDMEE----ERVV-PTEK-	149
RAB3A	TYSWD----NAQVLLVGNKCDMED----ERVV-SSER-	149
RAB3C	TYSWD----NAQVILVGNKCDMED----ERVI-STER-	157
RAB15	EYAPE----GVQKILIGNKADEEQ----KRQV-GREQ-	135
RAB13	ENASA----GVERLLLGNKCDMEA----KRKV-QKEQ-	135
RAB10	EHANE----DVERMLLGNKCDMDD----KRVV-PKGK-	136
RAB8A	EHASA----DVEKMILGNKCDVND----KRQV-SKER	135
RAB8B	EHASS----DVERMILGNKCDMND----KRQV-SKER-	135
RAB35	QNC-D----DVCRILVGNKNDDPE----RKVV-ETED	134
RAB1A	RYASE----NVNKLLVGNKCDLTT----KKVV-DYTT-	138
RAB1B	RYASE----NVNKLLVGNKSDLTT----KKVV-DNTT-	135

RAB27A
RAB27B
RAB24
RAB6C
RAB6D
RAB6A
RAB6B
RAB17
RAB21
RAB5B
RAB5A
RAB5C
RAB22A
RAB22B(31)
RAB20
RAB28
RAB29
RAB32
RAB38
RAB34
RAB36
RAB42
RAB39A
RAB39B
RAB7B
RAB7A
RAB9A
RAB9B
RAB23
RAB40C
RAB40B
RAB40A
RAB40AL
RAB33A
RAB33B
RAB30
RAB19
RAB43
RAB18
RAB2A
RAB2B
RAB14
RAB4A
RAB4B
RAB25
RAB11A
RAB11B
RAB12
RAB26
RAB37
RAB3D
RAB3B
RAB3A
RAB3C
RAB15
RAB13
RAB10
RAB8A
RAB8B
RAB35
RAB1A
RAB1B

ARELADK	FETSAAT---GQNVEKAVETLLDLIMKRMEQ	187
VQDYADN	KA-QLFETSSKT---GQSVDELFQKVAEDYVSVAAF	17
GERKAKG	NV-TFIETRAKA---GYNVKQLFRRVAAALPGMEST	180
GERKAKG	-NV-TFIETRAKA---GYNVKQLFRRVAAALPGMEST	180
GERKAKE-	NV-MFIETSAKA---GYNVKQLFRRVAAALPGMEST	18
GEQRAKE-	SV-MFIETSAKT---GYNVKQLFRRVASALPGMENV	180
GKEFADS-Q	KL-LFMETSAKL---NHQVSEVFNTVAQELLQRSDE	186
AESYAES-	GA-KHYHTSAKQ---NKGIEELFLDLCKRMIETAQV	186
AQAYADD-N	SL-LFMETSAKT---AMNVNDLFLAIAKKLPKSEPQ	18
AQSYADD-	SL-LFMETSAKT---SMNVNEIFMAIAKKLPKNEPQ	18
AQAYADD-	SL-LFMETSAKT---AMNVNEIFMAIAKKLPKNEPQ	188
AKDYADS-I	-HA-IFVETSAKN---AININELFIEISRRIPSTDAN	172
AKEYAES-	-GA-IVVETSAKN---AINIEELFQGISRQIPPLDPH	172
LEDAVALYKKILK	PAAEQMCFETSAKT---GYNVDLLFETLFDLVVPMILQ	207
-HLRFCQE-N	GF-SSHFVSAKT---GDSVFLCFQKVAAEILGIKLN	183
IDRFSKE-	GFTGWTETSVKE---NKNINEAMRVLIEKMMRNSTE	179
VDQFCKE-H	GFAGWFETSAKD---NINIEEAARFLVEKILVNHQS	198
MDQFCKE	-GFVGWFETSAKE---NINIDEASRCLVKHILANECD	183
ALQVAQE	KA-EYWAVSSLT---GENVREFFFRVAALTFEANVL	22
AVHLARE	-QA-EYWSVSAKT---GENVKAFFSRVAALAFEQSVL	293
AEELAAS	-GM-AFVETSVKN---NCNVDLAFDTLADAIQQALQQ	183
AEKLSAD	-GM-KYIETSAKD---ATNVEESFTILTRDIYELIKK	18
AEKLAAA	-GM-KYIETSARD---AINVEKAFTDLTRDIYELVKR	17
AQGWCRE	-DIPYFEVSAKN---DINVVQAFEMLASRALSRYQS	17
AQAWCYS	-NNIPYFETSAKE---AINVEQAFQTIARNALKQETE	17
AQAWCRD-	GDYPYFETSAKD---ATNVAAAFEEAVRRVLATEDR	178
AQTWCME-	-GDYPYLETSAKD---DTNVTVAFEEAVRQVLAVEEQ	17
AEALAKR-	-KL-RFYRTSVKE---DLNVNEVFKYLAEKYLQKLKQ	
ARAYAEK-N	CM-TFFEVSPLC---NFNVIESFTELSRIVLMRHGM	180
-AQAYAER	-GV-TFFEVSPLC---NFNITESFTELARIVLLRHGM	18
AQAYAER	GV-TFFEVSPLC---NFNIIESFTELARIVLLRHRM	18
AQAYA	GV-TFFEVSPLC---NFNIIESFTELARIVLLRHRL	180
-ALKFADA	-NM-LLFETSAKDPKESQNVESIFMCLACRLKAQKSL	20
AQKFADT	SM-PLFETSAKNPNDNDHVEAIFMTLAHKLKSHKPL	205
AEEFSEA	-DM-YYLETSAKE---SDNVEKLFLDLACRLISEARQ	
ACTLAEK	-GLLAVLETSAKE---SKNIEEVFVLMAKELIARNSL	18
AQSLA	-DILCAIETSAKD---SSNVEEAFLRVATELIMRHGG	18
GLKFARK	-SM-LFIEASAKT---CDGVQCAFEELVEKIIQTPGL	175
GEAFARE	-GL-IFMETSAKT---ASNVEEAFINTAKEIYEKIQE	17
GEAFARE-	-GL-IFMETSAKT---ACNVEEAFINTAKEIYRKIQQ	17
AKQFAEE	-GL-LFLEASAKT---GENVEDAFLEAAKKIYQNIQD	17
-ASRFAQE-	-EL-MFLETSALT---GENVEEAFVQCARKILNKIES	
-ASRFAQE	-EL-MFLETSALT---GENVEEAFLKCARTILNKIDS	
ARMFAEN-	-GL-LFLETSALD---STNVELAFETVLKEIFAKVSK	17
ARAFAEK-	-GL-SFIETSALD---STNVEAAFQTILTEIYRIVSQ	
ARAFA	-NL-SFIETSALD---STNVEEAFKNILTEIYRIVSQ	
GEKFAQQI	-GM-RFCEASAKD---NFNVDEIFLKLVDDILKKMPL	21
GEKLAKE	-GL-PFMETSAKT---GLNVDLAFTAIAKELKQRSMK	23
GETLARE	-GV-PFLETSAKT---GMNVELAFLAIAKELKYRAGH	
GRRLADD-	-GF-EFFEASAKE---NINVKQVFERLVDVICEKMNE	
GQLLAEQ	-GF-DFFEASAKE---NISVRQAFERLVDAICDKMSD	18
GRQLADH-	-GF-EFFEASAKD---NINVKQTFERLVDVICEKMSE	
GQHLGEQ-	-GF-EFFETSAKD---NINVKQTFERLVDIICDKMSE	
GQQLAKE	-GM-DFYETSACT---NLNIKESFTRLTELVLQAHRK	17
ADKLARE	-GI-RFFETSAKS---SMNVDEAFSSLARDILLKSGG	17
GEQIARE-H	-GI-RFFETSAKA---NINIEKAFLTLAEDILRKTPV	
GEKLALD	-GI-KFMETSAKA---NINVENAFFTLARDIKAKMDK	17
GEKLAID	-GI-KFLETSAKS---SANVEEAFFTLARDIMTKLNR	175
AYKFAGQ-	-GI-QLFETSAKE---NVNVEEMFNCITELVLRAKKD	
AKEFADS	GI-PFLETSAKN---ATNVEQSFMTMAAEIKKRMGP	

RAB27A	CVDKSWIPEGV-VRSN	S-TD---------QLSEEKEKGA	218
RAB27B	CVEKTQIPDTV-NGGNSGN	---LDGEKPPEKK	215
RAB24	QVMTE	-DKGV---DLS------QK-ANPYFYS	199
RAB6C	QDGSRE	-DMSDIKLE------KPQEQTVSEG	204
RAB6D	QDGSRE	--DMSDIKLE------KPQEQTVSEG	204
RAB6A	QDRSRE	--DMIDIKLE------KPQEQPVSEG	204
RAB6B	QEKSKE	-GMIDIKLD------KPQEPPASEG	204
RAB17	EGQA	-LRGDAAVALN-------K-GPARQAK	208
RAB21	DERAKGNGSSQ	ARRGVQIIDDE------PQ-AQTSGGG	220
RAB5B	NLG---G---A	RRSRGV---DLH------EQ-SQQNKSQ	211
RAB5A	NPG	RGGRG---DLT------EP-TQPTRNQ	211
RAB5C	NAT---G---A	RNRGV---DLQ------EN-NPASRSQ	212
RAB22A	LPS---G	-GKGF---KLR------RQ-PSEPKRS	192
RAB22B (31)	ENG---N	-NGTI---KVE------KP-TMQASRR	192
RAB20	QRAERPSHTVD	---ISS-----HKPPKRTRSG	231
RAB28	KAEIEQ-SQRVVKA	--D-IVNYNQEPMS---RTVNPPRS	215
RAB29	DIMSLSTQG	--D-YINLQTK-----S----SSWS	201
RAB32	FPNE-ENDV	---D-KIKLDQE-----TLRAENKSQ	223
RAB38	LMESIEPDV	--V-KPHLT-------STKVASCSG	207
RAB34	AELEKSGARRI	--GD-VVRINSDDSN-LYLTASKKKP	255
RAB36	QDLERQSSARL-----QV	-GNGD-LIQMEGSPPE-TQESKRPSSL	330
RAB42	GDIKLEEGWGGVRLI	----H-KTQIPRS----P-SRKQHSGP	215
RAB39A	GEICIQDGWEGVKSG	--F-VPNTVHS----SEEAVKPRKE	214
RAB39B	GEITIQEGWEGVKSG	--F-VPNVVHS----SEEVVKSERR	210
RAB7B	ILE-N--HLTE	----SIKL-------S-P-DQSRSR	197
RAB7A	VELYNEFPEPI	---KLDK-------NDR-AKASAE	203
RAB9A	SDHLI---QTD	--TVNL-------HRK-PKPSSS	199
RAB9B	LEHCM---LGH	---TIDL-------NSG-SKAGSS	199
RAB23	QIAEDPELTHSSSNKIGVF	LNGGD-VINLRPN-KQRTKKNRNPFSS	233
RAB40C	EKIWRPNRV	------FSLQDL	195
RAB40B	DRLWRPSKV	---LSLQDL	195
RAB40A	NWLGRPSKV	---LSLQDL	195
RAB40AL	NWLGRPSKV	------LSLQDL	195
RAB33A	LYRDAERQQGK	--Q-KLEF--------PQEANSKTS	234
RAB33B	MLSQPPDN-G	-IIL--------KPEPKPAMT	226
RAB30	NTLVNNV	-SSPL-------PGEGKSISYL	197
RAB19	HLYGESALN-G----LPLD	--S-SPVL-------MAQGPSEKTH	214
RAB43	PLFSEKSPD-H----IQLN	-S-KDI-------------GEGWG	209
RAB18	WESENQNK--G----VKLS	-H-REE--------GQG-GGACGG	201
RAB2A	GVFDINNEANGIKIGPQHA	--A-TNATHAG----NQGGQQAGGG	210
RAB2B	GLFDVHNEANGIKIGPQQS	--I-STSVGPSASQRNSRDIGSNSG	214
RAB14	GSLDLNAAESGVQHKPSAP	--Q-GGRL-TS----EPQPQREGCG	214
RAB4A	GELDPERMGSGIQYGDAAL	--R-QLRSPRR----AQAPNAQECG	217
RAB4B	GELDPERMGSGIQYGDASL	--R-QLRQPRS----AQAVAPQPCG	212
RAB25	QRQNSIRTNAITLGSAQ-	--AG----QEPGPGEKRA	208
RAB11A	KQMSDRRENDMSPSNNVV-	--PIHVPPT----TEN--KPKVQ	211
RAB11B	KQIADRAAHDESPGNNVV-	--DISVPPT----TDGQKPNKLQ	213
RAB12	DILRNELS--NSI--LSLQ	--P-EPEIPPE----LPP-PRPHVR	242
RAB26	APSEPRFR---------LH	--D-YV----------KR-EGRGAS	252
RAB37	QADEPSFQ---------IR	-D-YV----------ES-QKKRSS	218
RAB3D	SLEPSSSS-GSNGKGPAVG	--D-AP-------------APQPSS	216
RAB3B	SLDT-DPSMLGSSKNTRLS	--D-TP-------------PLLQQN	216
RAB3A	SLDTADPAVTGAKQGPQLS	--D-QQ-------------VPPHQD	217
RAB3C	SLET-DPAITAAKQNTRLK	--E-TP-------------PPPQPN	224
RAB15	ELEGLRMRASNELALAELE	---E-EEG-KPE----GP--ANSSKT	209
RAB13	RRSGNGNKPPSTD--LK	-TCD-KKNTNK	199
RAB10	KEPNSENVDISSGGGVT	---GW----KS-------K	198
RAB8A	KLEGNSPQ--GSNQGVKIT	---PD----QQK-RSSFFR	203
RAB8B	KMNDSNSA--GAGGPVKIT	---EN----RSK-KTSFFR	203
RAB35	NLAKQQQQ--QQNDVVKL	-KN--------SKRKKR	199
RAB1A	GATAGGAE--KSNVKIQST	-PV--------KQSGGG	203
RAB1B	GAASGG-E--RPNLKIDST	--PV--------KPAGGG	199

RAB27A	CGC-----	221
RAB27B	CIC--	218
RAB24	CCHH-	203
RAB6C	GCSCYSPMSSSTLPQKPPYSFIDCSVNIGLNLFPSLITFCNSSLLPVSWR--	254
RAB6D	GCSCYSPMSSSTLPQKPPYSFIDCSVNIGLNLFPSLITFCNSSLLPVSWR-	254
RAB6A	GCSC	208
RAB6B	GCSC-	208
RAB17	CCAH-	212
RAB21	CCSSG-	225
RAB5B	CCSN-	215
RAB5A	CCSN	215
RAB5C	CCSN-	216
RAB22A	CC-	194
RAB22B(31)	CC-	194
RAB20	CCA	234
RAB28	SMCAVQ-	221
RAB29	CC---	203
RAB32	CC	225
RAB38	CAKS	211
RAB34	TCCP-	259
RAB36	GCC-	333
RAB42	CQC	218
RAB39A	CFC-	217
RAB39B	CLC	213
RAB7B	CC	199
RAB7A	SCSC-	207
RAB9A	CC	201
RAB9B	CC--	201
RAB23	CSIP-	237
RAB40C	CCRAIVSCTPVHLIDKLPLPVTIKS---HLKSFSMANGMNAVMMHGRSYSLASGAGGGGS	252
RAB40B	CCRAVVSCTPVHLVDKLPLPIALRS---HLKSFSMANGLNARMMHGGSYSLTTSST---H	249
RAB40A	CCRTIVSCTPVHLVDKLPLPSTLRS---HLKSFSMAKGLNARMMRGLSYSLTTSST---H	249
RAB40AL	CCRTIVSCTPVHLVDKLPLPIALRS---HLKSFSMAKGLNARMMRGLSYSLTTSST---H	249
RAB33A	CPC---	237
Rab33B	CWC	229
RAB30	TCCNFN-	203
RAB19	CTC-	217
RAB43	CGC-	212
RAB18	YCSVL	206
RAB2A	CC-	212
RAB2B	CC-	216
RAB14	C	215
RAB4A	C-	218
RAB4B	C-	213
RAB25	CCISL	213
RAB11A	CCQNI-	216
RAB11B	CCQNL-	218
RAB12	CC-	244
RAB26	CCRP-	256
RAB37	CCSFM	223
RAB3D	CSC-	219
RAB3B	CSC-	219
RAB3A	CAC	220
RAB3C	CAC	227
RAB15	CWC	212
RAB13	CSLG	203
RAB10	CC	200
RAB8A	CVLL	207
RAB8B	CSLL-	207
RAB35	CC-	201
RAB1A	CC-	205
RAB1B		201

RAB27A	------------------------------	21
RAB27B		218
RAB24		203
RAB6C		254
RAB6D		254
RAB6A		208
RAB6B		208
RAB17		212
RAB21		225
RAB5B		215
RAB5A	------------------------------	215
RAB5C		216
RAB22A		194
RAB22B(31)		194
RAB20		234
RAB28		221
RAB29	------------------	203
RAB32		225
RAB38	-----------------------------	211
RAB34	-------	259
RAB36	------------------------	333
RAB42		218
RAB39A	-------------------------------	217
RAB39B		213
RAB7B	------------------------------	199
RAB7A		207
RAB9A	-----------------------------	201
RAB9B		201
RAB23		237
RAB40C	KGNSLKRSKSIRPPQSPPQNCSRSNCKIS	281
RAB40B	KRSSLRKVKLVRPPQSPPKNCTRNSCKIS	278
RAB40A	K-SSLCKVEIVCPPQSPPKNCTRNSCKIS	277
RAB40AL	KRSSLCKVKIVCPPQSPPKNCTRNSCKIS	278
RAB33A		237
RAB33B	-------------	229
RAB30	----------------------	203
RAB19	------------------------	217
RAB43	-------------------------	212
RAB18	------------------------	206
RAB2A	------------------------------	212
RAB2B	---------------------------	216
RAB14	------------------------------	215
RAB4A	--------------------------	218
RAB4B		213
RAB25	------	213
RAB11A		216
RAB11B	-------------------------------	218
RAB12		244
RAB26		256
RAB37		223
RAB3D		219
RAB3B		219
RAB3A		220
RAB3C		227
RAB15		212
RAB13		203
RAB10	-----------------------------	200
RAB8A	----------------------------	207
RAB8B	----------------------------	207
RAB35	----------------------	201
RAB1A		205
RAB1B		201

Figure S4. Full Sequence alignment of Rab proteins in phylogenetic order compared to Rab27A and B (top). Unique cysteines C 123 and C 188 are highlighted in red.

Figure S5. Tryptic digestion and peptide mass fingerprinting for labelling site-ID of A) A01-fRab27A-C188 and B) B01-fRab27A-C188.

A
A01 (500 uM)

	Labelling half-life (h)
\rightarrow fRab27A-C123	>96
- fRab27A-C188	7.5
\pm nRab27A-C123	>96
$\rightarrow-\mathrm{nRab} 27 \mathrm{~A}-\mathrm{C} 188$	49
-- GSH	>96

C

$\mathrm{k}_{\text {inact }} / \mathrm{K}_{\mathrm{I}}=0.1078 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

B B01 (500 uM)

	Labelling half-life (h)
$\bullet-$ fRab27A-C123	0.54
- fRab27A-C188	0.56
\pm nRab27A-C123	0.89
$\rightarrow-\mathrm{nRab} 27 \mathrm{~A}-\mathrm{C} 188$	0.29
-- GSH	4.2

D
B01_fRab27A-C123

$\mathrm{K}_{\text {inact }} / \mathrm{K}_{\mathrm{l}}=1.478 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Figure S6. Biochemical characterisation of hits. A-B) qIT data against fRab27A-C123, fRab27A-C188, nRab27A-C123, nRab27A-C188 and GSH including labelling half-lives for resynthesised hits A01 (A) and B01 (B). C-D) $k_{\text {obs }}[I]$ graphs for A01 against fRab27A-C188 (C), and for B01 against fRab27A-C123 (D)

Figure S7. Electron density maps for $\mathbf{A 0 1}$ and B01. 2Fo-Fc electron density maps (grey) contoured at 1.0σ for ligands (pink) covalently bound to a cysteine residue (cyan). A) A01 bound to fRab27A-C188 (full structure shown in Fig. 3B and 3C) and B) B01 bound to fRab27AC123 (full structure shown in Fig. 3E and 3F) superimposed on the final model of the respective ligands.

Figure S8. Molecular dynamics and rotameric properties of Y122 in Rab27A. (A) Distribution of chi-1 angles of Y122 during a 250 ns molecular dynamics simulation. (B) Structure of Rab27A, coloured according to the C-alpha Root Mean Squared Fluctuations. Red colours (thicker ribbon) correspond to more mobile regions, whereas blue regions are more rigid. (C) C-alpha Root Mean Squared Fluctuations of Rab27A plotted against its primary sequence.

Supplementary Tables

Table S1. Data Processing and Refinement Statistics for fRab27A

Data Collection	
Space group	$P 3,21$
Unit cell parameters (Å)	$a=117.71, b=117.71, c=115.67$
Wavelength (A)	0.97949
Resolution (\AA)	50.97-2.32 (2.40-2.32)
Total reflections	80969 (7952)
Unique reflections	40486 (3976)
Multiplicity	2.0 (2.0)
Completeness (\%)	99.96 (99.95)
<l>/<o(l)>	20.04 (3.29)
$R_{\text {merge }}$	0.027 (0.240)
$R_{\text {meas }}$	0.039 (0.340)
Wilson B factor	36.64
$\mathrm{CC}_{1 / 2}$	0.999 (0.844)
Refinement	
Reflections used in refinement	40483 (3976)
Reflections used for Riree	1945 (229)
$R_{\text {work }}$ (\%)	0.159
$R_{\text {free }}$ (\%)	0.198
Rmsd bond lengths (A)	0.008
Rmsd bond angles (${ }^{\circ}$)	1.10
Average B factors (A^{2})/Number of atoms	
Macromolecules	42.13/ 3426
Water molecules	47.12/398
Ligand non- H atoms gppnhp- Mg^{2+}	28.3/66
Ramachandran Most favored region (\%)	97.79
Ramachandran allowed region (\%)	2.1
Ramachandran outliers (\%)	0.0
Rotamer outliers (\%)	0.56

Statistics for the highest-resolution shell are shown in parentheses.
$R_{\text {merge }}=\Sigma\left(\ln _{\mathrm{h}}-<\ln >\right) / \Sigma<\ln >$
$R_{\text {meas }}=\Sigma \sqrt{ }\left(\mathrm{n}_{\mathrm{h}} / \mathrm{n}_{\mathrm{h}}-1\right)\left(\ln _{\mathrm{h}}-\langle\ln \rangle\right) / \Sigma\langle\ln \rangle$

Table S2. Data Processing and Refinement Statistics for fRab27A-C188 covalently bound to A01

Data Collection	
Space group	$P 2{ }_{1}{ }_{1} 2_{1}$
Unit cell parameters (A)	$a=61.71, b=76.82, \mathrm{c}=117.82$
Wavelength (Å)	0.97949
Resolution (A)	36.52-2.23 (2.31-2.23)
Total reflections	54026 (3920)
Unique reflections	27128 (2005)
Multiplicity	2.0 (2.0)
Completeness (\%)	96.86 (72.64)
<l>\|<б(l)>	13.67 (2.01)
$R_{\text {merge }}$	0.0340 (0.360)
$R_{\text {meas }}$	0.048 (0.509)
Wilson B factor	41.61
$\mathrm{CC}_{1 / 2}$	1 (0.929)
Refinement	
Reflections used in refinement	27126 (2005)
Reflections used for $R_{\text {free }}$	1342 (98)
$R_{\text {work }}$ (\%)	0.177
$R_{\text {free }}$ (\%)	0.224
Rmsd bond lengths (A)	0.255
Rmsd bond angles (${ }^{\circ}$)	2.82
Average B factors (A^{2})/Number of atoms	
Macromolecules	46.28/3287
Water molecules	50.94/179
Ligand non-H atoms gppnhp-Mg2+ Φ / Ψ angles (\%)	51.70/160
Ramachandran Most favored region (\%)	98.02
Ramachandran allowed region (\%)	1.98
Ramachandran outliers (\%)	0.0
Rotamer outliers (\%)	0.00
Statistics for the highest-resolution shell are shown in parentheses.	
$R_{\text {merge }}=\Sigma(\ln -<\ln >) / \Sigma<\ln >$	
$\left.R_{\text {meas }}=\Sigma \sqrt{ }\left(\mathrm{n}_{\mathrm{h}} / \mathrm{n}_{\mathrm{h}}-1\right)(\ln \mid-\langle\ln \rangle) / \Sigma<\ln \right\rangle$	

Table S3. Data Processing and Refinement Statistics for fRab27A-C123 covalently bound to B01

Data Collection	
Space group	$P 2,2{ }_{1}{ }_{1}$
Unit cell parameters (A)	$a=61.38, b=76.66, c=118.24$
Wavelength (\AA)	0.97949
Resolution (A)	64.33-2.32 (2.40-2.32)
Total reflections	49537 (4902)
Unique reflections	24831 (2455)
Multiplicity	2.0 (2.0)
Completeness (\%)	99.82 (99.67)
<l>\|< $<$ (l)>	9.77 (2.23)
$R_{\text {merge }}$	0.059 (0.325)
$R_{\text {meas }}$	0.083 (0.460)
Wilson B factor	32.90
$\mathrm{CC}_{1 / 2}$	0.993 (0.832)
Refinement	
Reflections used in refinement	24809 (2448)
Reflections used for $R_{\text {free }}$	1209 (116)
$R_{\text {work }}$ (\%)	0.183
$R_{\text {free }}$ (\%)	0.254
Rmsd bond lengths (A)	0.008
Rmsd bond angles (${ }^{\circ}$)	1.02
Average B factors (A^{2})/Number of atoms	
Macromolecules	35.73/3449
Water molecules	38.33/249
Ligand non-H atoms gppnhp- Mg^{2+}	41.01/176
Ф/ Ψ angles (\%)	
Ramachandran Most favored region (\%)	96.59
Ramachandran allowed region (\%)	3.41
Ramachandran outliers (\%)	0.0
Rotamer outliers (\%)	0.84
Statistics for the highest-resolution shell are shown in parentheses.	
$\left.\left.R_{\text {merge }}=\Sigma(\ln 1-<\ln \rangle\right) / \Sigma<\ln \right\rangle$	
$\left.\left.R_{\text {meas }}=\Sigma \sqrt{ }\left(n_{h} / n_{h}-1\right)(\operatorname{lnl}-<\ln \rangle\right) / \Sigma<\ln \right\rangle$	

Table S4. Data from intact mass spectrometry and qIT screen used for hit validation against fRab27AC123 (top) and fRab27A-C188 (bottom).

fRab27A-C123						
	REF	qIT half- life	Mono-modification by intact protein MS	MS half- life	Validated	
CA32/228	4.2	21.4 h	Yes: expect 250 Da, observed 252	34.3 h	No	
CA84	$2.3004 \mathrm{E}-12$	-	Wrong mass: expect 255 Da, observed 326	-	No	
CA144 (B01)	2.9	4.7 h	Yes: expect 292 Da, observed 293	6.6 h	Yes	
CA92	4.8	-	Wrong mass: expect 268 Da, observed 352	-	No	

fRab27A-C188

	REF	qIT halflife	Mono-modification by intact protein MS	$\begin{gathered} \hline \text { MS } \\ \text { half- } \\ \text { life } \end{gathered}$	Validated
CA32/228	7.6	-	Wrong mass: expect 250 Da , observed 359	-	No
CA84	2.3	-	Protein degraded	-	No
CA89	1.6	4.3 h	Yes: expect 284 Da , observed 282	7.4 h	Yes
$\begin{aligned} & \text { CA144 } \\ & \text { (B01) } \\ & \hline \end{aligned}$	2.4	4.5 h	Yes: expect 292 Da, observed 291	11.8 h	No
$\begin{aligned} & \text { EL1062 } \\ & \text { (A01) } \\ & \hline \end{aligned}$	2.5	26.2 h	Yes: expect 231 Da, observed 231	32.5 h	Yes
EL1064	2.2	12.8 h	Yes: expect 252 Da , observed 253	15.8 h	Yes
CA193	2	-	Wrong mass: expect 209 Da, observed 261	-	No
CA187	1.7	4.3 h	Yes: expect 252 Da , observed 250	13.2 h	No
CA53	5.7	-	No labelling	-	No

Materials and Methods

Protein expression and purification

All Rab27A constructs contain the sequence for human Rab27A (UniProt entry P51159, residues 1-192, mutations: Q78L and C123S or C188S or both as specified), which was cloned into a pET15b vector (Invitrogen) including a N-terminal His-tag followed by a Tobacco Etch Virus (TEV) recognition site (ENLYFQ;G). Fusion constructs also contain the C-terminus of Slp2a SHD1 (SFLTEEEQEAIMKVLQRDAALKRAEEER (residues 5-32)) linked to the Nterminus of Rab27A via a flexible poly glycine-serine linker (GSGSGSG). For protein expression, plasmids were transformed to E. coli BL21 cells and spread on LB agar plates containing $100 \mathrm{mg} / \mathrm{L}$ Ampicillin for selection. Single colonies were picked for amplification and incubated overnight into LB media containing $100 \mathrm{mg} / \mathrm{L}$ Ampicillin at $37^{\circ} \mathrm{C}$, shaking. Big scale cultures were inoculated using these overnight cultures at $1 \% \mathrm{v} / \mathrm{v}$, and grown at $37^{\circ} \mathrm{C}$ until absorbance at 600 nm reached 0.7 . Protein expression was induced using 0.5 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) at $37^{\circ} \mathrm{C}$ for 3 hours. Subsequently cells were pelleted at 4 k rpm for 10 min , then re-suspended in lysis buffer containing $500 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole, 5 mM MgCl 2 and 50 mM Tris at pH 8.0 Cells were lysed with a cell disruptor at 25 K psi and centrifuged at 15 krpm for 45 min . The supernatant was loaded on Niz+NTA resin equilibrated with lysis buffer, washed extensively and eluted using buffer containing $500 \mathrm{mM} \mathrm{NaCl}, 300 \mathrm{mM}$ imidazole, 5 mM MgCl 2 and 50 mM Tris at pH 8.0 The protein was dialyzed for 6 h using 100 $\mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$ and 50 mM Tris, pH 8.0 Afterwards TEV protease (obtained in-house as previously described ${ }^{5}$) was added to the protein solution at a molar ratio of $1 / 20$ in the presence of 1 mM DTT, and the solution was incubated overnight at $4^{\circ} \mathrm{C}$, shaking. The solution was dialyzed using $100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$ and 50 mM Tris, pH 8 and then loaded on $\mathrm{Ni}_{2}+\mathrm{NTA}$ resin. The flowthrough was collected, concentrated to $5.5 \mathrm{mg} / \mathrm{mL}$ in $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}$, 20 mM Tris pH 8 buffer. Then a $10 x$ buffer containing $10 \mathrm{mM} \mathrm{ZnCl} l_{2}$ and $2 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 4$ molar excess of GppNHp and 25 units of Antarctic phosphatase (New England Biolabs) were added to the solution and incubated overnight at $4^{\circ} \mathrm{C}$. Finally the sample was loaded on a superdex S-75 gel filtration column at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The column was pre-equilibrated with 150 mM $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}$, and 20 mM Tris at pH 8 for crystallography. The peaks corresponding to Rab27A constructs were analysed by SDS-PAGE, pooled, concentrated and flash frozen using liquid nitrogen. All Rab27A constructs containing exposed cysteines at C123 or C188 were purified in buffer containing an additional $0.1 \% \beta$-mercaptoethanol ($\beta \mathrm{ME}$) during $\mathrm{Ni}^{2+}-$ NTA steps.

Protein labelling and purification

To a 15 mL falcon tube were added $600 \mu \mathrm{~L}$ of desired construct ($100 \mu \mathrm{M}$ stock), $100 \mu \mathrm{~L}$ of 50% w/v TCEP-agarose beads (ThermoFisher), and 1.8 mL of $100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, and 20 mM HEPES $\mathrm{pH} 8.0 .50 \mu \mathrm{~L}$ of ligand (50 mM stock) were diluted with 2.45 mL of 100 mM $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}$, and 20 mM HEPES pH 8.0 , followed by centrifugation (2400 rpm , 5 min). The supernatant was added to the protein mixture and incubated at $4^{\circ} \mathrm{C}$. The reaction was monitored as described in the QIT protocol (v. infra). When the labelling reached 90%, the labelled protein solution was concentrated to 0.5 mL by using a Vivaspin 20 filter (5000 MWCO). The protein was diluted with 4.5 mL of $100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}$, and 20 mM HEPES pH 8.0 and concentrated again to $0.5 \mathrm{~mL}(5 \mathrm{x})$, to remove excess compound, then purified by superdex $\mathrm{S}-75$ gel filtration at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ in $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}$, and 20 mM Tris at pH 8 for crystallography.

Protein crystallisation

Pure samples of fRab27A-C188 labelled with A01 and fRab27A-C123 labelled with B01 were concentrated to $15 \mathrm{mg} / \mathrm{mL}$, in buffer containing $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl} 2$, and 20 mM Tris at pH 8.0. Crystals were grown at $4^{\circ} \mathrm{C}$ using the sitting-drop vapor-diffusion method with a mother liquor containing $120 \mathrm{mM} \mathrm{MgCl}, 50 \mathrm{mM}$ bis-Tris, and 15\% 2-propanol, pH 6.8.

Crystal diffraction, data collection and data processing

Data collections were carried out at i02 beamline in Diamond Light Source (Oxford, UK) at 100 K of temperature, wavelength $0.9795 \AA$, and using a Pilatus detector. Data were collected at $0.2^{\circ}-$ 0.5° oscillations per image and 200° total oscillation per crystal. Data was integrated, scaled and reduced using DIALS. ${ }^{6}$ Initial phases were calculated using the molecular replacement program Phaser. ${ }^{7}$ The coordinates of Rab27A from chain A of the Rab27A-Slp2a complex (PDB:3BC1) without the nucleotide and the magnesium ion were used as the search model. Subsequently, the initial model generated by phaser was refined through an iterative cycle using COOT ${ }^{9}$ and REFMAC5. ${ }^{10}$ Final model structures were validated using the Molprobity server ${ }^{11}$ at http://molprobity.biochem.duke.edu. All structure images were prepared using Pymol (DeLano Scientific LLC, http://pymol.sourceforge.net/). X-ray data collection, processing and refinement statistics are given in Table S1.

Molecular dynamics simulations

The Rab27A structure (PDB: 3BC1) was simulated with bound GTP and Mg^{2+}. The structure was parametrised using the latest CHARMM36 force field ${ }^{4}$, solvated with Tip3p waters ${ }^{12}$ and neutralised with Na^{+}and Cl^{-}ions at a concentration of 150 mM . Temperature was coupled for 100 ps at 300 K with the V-rescale method, ${ }^{13}$ with positional restraints on the protein heavy atoms. Pressure was then coupled at 1 bar for another 100 ps with position restraints, using the Berendsen algorithm. ${ }^{14}$ The Particle mesh Ewald method ${ }^{15}$ was used for electrostatic interactions, and LINCS ${ }^{16}$ to define the constraints. The integration timestep was 2 fs. The final production simulation was extended for 250 ns. The simulation and data analysis were carried out using the GROMACS simulation package. ${ }^{17}$

qIT assay for screening and hit validation

126 electrophilic acrylamides (see supplementary excel file) were screened in the qIT assay adapted from Craven et al ${ }^{18}$. Briefly, the reaction buffer (20 mM HEPES $\mathrm{pH} 8.0,100 \mathrm{mM} \mathrm{NaCl}$, $5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$) and quench buffer (20 mM HEPES $\mathrm{pH} 7.4,100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$) were prepared, filtered, de-gassed, and re-gassed with Ar for 15 min on ice. Reaction setup: To each well of a 96 -well PCR plate (reaction plate), $8 \mu \mathrm{~L}$ of $50 \% \mathrm{w} / \mathrm{v}$ TCEP-agarose beads in reaction buffer was added, followed by the addition of $92 \mu \mathrm{~L}$ of $10.87 \mu \mathrm{M}$ protein or glutathione (GSH). In a separate 96 -well PCR plate (ligand plate), $3 \mu \mathrm{~L}$ of DMSO or 50 mM ligand in DMSO was added to $147 \mu \mathrm{~L}$ reaction buffer and centrifuged ($1 \mathrm{k} \mathrm{rpm}, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}$). $100 \mu \mathrm{~L}$ of ligand solution or DMSO control from the ligand plate was added to the reaction plate (final concentration: $5 \mu \mathrm{M}$ protein/GSH and $500 \mu \mathrm{M}$ ligand). After mixing, the TCEP-agarose beads were pelleted by centrifugation ($1 \mathrm{k} \mathrm{rpm}, 5 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and the plate was kept at $4^{\circ} \mathrm{C}$.

At a series of time points ($\mathrm{t}=0.25 .1,2,4,7,24,48,72$, and 96 h), a $3 \mu \mathrm{~L}$ aliquot in duplicate from the reaction plate was quenched in a black 384 -well plate, in which each well was pre-filled with $27 \mu \mathrm{~L}$ of 7-Diethylamino-3-(4'-Maleimidylphenyl)-4-Methylcoumarin (CPM) solution ($1.4 \mu \mathrm{M}$ in quench buffer). The fluorescence plate was spun down ($1 \mathrm{krpm}, 1 \mathrm{~min}$) and incubated for 60 min at room temperature and then fluorescence intensity (excitation/emission: 384/470 nm) was measured on an EnVision ${ }^{\text {™ }}$ plate reader.
Data analysis: All analyses were conducted using Prism 9.0 software (Graphpad). Each fluorescence readout was normalized to the average of the DMSO controls. The normalized fluorescence was plotted against time. A one phase exponential decay was fitted to each plot (constraints: $\mathrm{Y}(0)>0.8 ; 0<$ plateau $<0.3 ; \mathrm{k}>0$). Data from at least three independent assay replicates were used to generate the graphs in Fig. S5.

qIT assay for $\mathbf{k}_{\text {inact }} / K_{\text {I }}$ determination

The $\mathrm{k}_{\text {inact }} / \mathrm{K}_{\mathrm{l}}$ values were determined from data obtained performing the qIT assay at different compound concentrations (eight 1:1.5 dilutions starting from $250 \mu \mathrm{M}$) at room temperature, quenching at different time-points ($\mathrm{t}=10,20,30,60,120,180,240,360,1440 \mathrm{~min}$). Kinetic curves of thiol labelling over time were used to estimate $k_{\text {obs }}$ values, which were then plotted against inhibitor concentration. The resulting linear data were analysed by linear regression to obtain $\mathrm{k}_{\text {inact }} / K_{\text {I }}$ values.

Peptide mass fingerprint analysis

$5 \mu \mathrm{~g}$ labelled or unlabelled recombinant Rab27A construct were run on a 12% SDS-PAGE gel and stained by Coomassie Blue. The expected band was excised and washed in $150 \mu \mathrm{~L}$ of 50% $\mathrm{v} / \mathrm{v} \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ for 5 min at rt , shaking. The supernatant was discarded, and the solid was washed with $150 \mu \mathrm{~L}$ of $50 \% \mathrm{v} / \mathrm{v} \mathrm{MeCN} / 50 \mathrm{mM} \mathrm{NH} \mathrm{NHCO}_{3}$ for 30 min at rt , shaking. The supernatant was discarded, and the solid was washed with $150 \mu \mathrm{~L}$ of $50 \% \mathrm{v} / \mathrm{v} \mathrm{MeCN} / 10 \mathrm{mM}$ $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ for 30 min at rt, shaking. The supernatant was dried in vacuo for 30 min at $45^{\circ} \mathrm{C}$, then $15 \mu \mathrm{~L}$ of Trypsin ($20 \mu \mathrm{~g} / 100 \mu \mathrm{~L}$ in $50 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{HCO}_{3}$) were added. After 10 min at rt, the mixture was diluted with $15 \mu \mathrm{~L}$ of $10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{HCO}_{3}$ and incubated overnight at $37^{\circ} \mathrm{C}$, shaking. The supernatant was diluted 1:1 with α-Cyano-4-hydroxycinnamic acid ($10 \mathrm{mg} / \mathrm{mL}$ in $50 \% \mathrm{v} / \mathrm{v}$ $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA) and anlysed by MALDI-QTOF.

Chemical Synthesis

Abbreviations

DMF (dimethylformamide), EtOAc (ethyl acetate), FCC (flash column chromatography), rt (room temperature), TFA (trifluoroacetic acid), THF (tetrahydrofuran), TLC (thin layer chromatography)

General Information

All chemicals were purchased from Sigma-Aldrich, Apollo Scientific, Acros Organics, Alfa Aesar and used without further purification unless otherwise indicated. All reactions were monitored by thin layer chromatography (TLC) using UV for visualisation unless otherwise stated. Compounds were purified using either an automated system using pre-packed silica cartridges with UV detection or by manual columns using an appropriate solvent mixture as detailed. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 MHz and 101 MHz respectively Bruker AV instruments at room temperature unless specified otherwise and were referenced to residual solvent signals. Data are presented as follows: chemical shift in ppm, multiplicity ($\mathrm{br}=\mathrm{broad}$, app $=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet), coupling constants in Hz , integration, and rotameric conformation if applicable. High-resolution mass spectrometry (HRMS) and intact mass spectrometry data were obtained by the Imperial Mass Spectrometry facility. m / z values are reported in Daltons (Da) to the nearest 0.0001 Da .

Scheme S1. Synthesis of hit fragment A01

tert-butyl (4-(4-methoxyphenyl)-4-oxobutyl)carbamate (1)

(4-Methoxyphenyl)magnesium bromide (0.5 M in THF, $24 \mathrm{~mL}, 12 \mathrm{mmol}$) was added dropwise over 30 min at $-78^{\circ} \mathrm{C}$ to a stirred solution of tert-butyl 2-oxopyrrolidine-1-carboxylate (1.7 mL , $10 \mathrm{mmol})$ in THF (40 mL). The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$, then slowly warmed to rt and stirred for 1 h before the pH was adjusted to $1-3$ using 1 M HCl . The solution was concentrated in vacuo, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(70 \mathrm{~mL})$, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, concentrated in vacuo. The crude product was purified by FCC ($6 \%-60 \%$ $\mathrm{EtOAc} /$ hexane) to give the title compound $\mathbf{1}$ as a white amorphous solid ($2.7 \mathrm{~g}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.92(2 \mathrm{H}, \mathrm{m}), 6.94-6.91(2 \mathrm{H}, \mathrm{m}), 4.67(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 3.87(3 \mathrm{H}$, s), 3.24-3.19 (2H, m), 2.97 (2H, t, J=7.2Hz), $1.92(2 \mathrm{H}, \mathrm{p}, J=7.0 \mathrm{~Hz}), 1.42(9 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,163.6,156.2,130.4,130.1,113.9,79.3,55.6,40.4,35.5$, 28.5, 24.8 ppm

5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrole (2)

Ketone 1 ($0.59 \mathrm{~g}, 2.0 \mathrm{mmol}$) was stirred in neat TFA (1.5 mL) at rt for 3.5 h . After the reaction was complete by TLC, the mixture was cooled to $0^{\circ} \mathrm{C}$ and $50 \% \mathrm{w} / \mathrm{v} \mathrm{NaOH}$ solution was added to the mixture until $\mathrm{pH} 13-14$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, then the combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo to afford the title compound 2 as a white crystalline solid which was used without further purification ($0.34 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.78(2 \mathrm{H}, \mathrm{m}), 6.94-6.90(2 \mathrm{H}, \mathrm{m}), 4.04(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3$, 1.9 Hz), $3.84(3 \mathrm{H}, \mathrm{s}), 2.95-2.90(2 \mathrm{H}, \mathrm{m}), 2.06-1.99(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,161.5,129.4,127.5,113.9,61.4,55.5,35.0,22.8 \mathrm{ppm}$
HRMS (ES) m / z Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 176.1075$, found 176.1080 ($\Delta 2.8 \mathrm{ppm}$)

2-(4-methoxyphenyl)pyrrolidine (3)

To a stirring solution of imide $2(0.30 \mathrm{~g}, 1.7 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 4: 1(2.0 \mathrm{~mL})$ was added NaBH_{4} $(78 \mathrm{mg}, 2.0 \mathrm{mmol})$ and the reaction was stirred for 20 h at rt. Additional $\mathrm{NaBH}_{4}(20 \mathrm{mg}$, 0.8 mmol) was added and the reaction was stirred until completion as monitored by TLC. The reaction mixture was acidified with 1 M HCl to $\mathrm{pH} 1-3$ and stirred for an additional 30 min , then 1 M NaOH was added until $\mathrm{pH} 13-15$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo to give the title compound 3 as a yellow oil ($81 \mathrm{mg}, 95 \%$), which was used without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(2 \mathrm{H}, \mathrm{m}), 6.87-6.84(2 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz})$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.19(1 \mathrm{H}, \mathrm{ddd}, J=10.3,7.8,5.3 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{ddd}, J=10.3,8.4,6.6 \mathrm{~Hz}), 2.24$ (1H, br s), 2.18-2.11 (1H, m), 1.99-1.78 (2H, m), 1.72-1.59 (1H, m) ppm
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,136.6,127.8,113.9,62.3,55.4,47.0,34.3,25.7 \mathrm{ppm}$
HRMS (ES) m / z Calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 178.1232$, found $178.1232(\Delta 0.0 \mathrm{ppm})$

1-(2-(4-methoxyphenyl)pyrrolidin-1-yl)prop-2-en-1-one (A01)

To a stirred solution of amine 3 ($89 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acryloyl chloride ($49 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ dropwise. The reaction was allowed to warm to rt , stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and then quenched by slow addition of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{~mL})$ then the combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by FCC ($12 \%-100 \%$ EtOAc/hexanes) afforded the title compound A01 as a clear, colourless oil ($79 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Rotameric ratio maj:min 0.76:0.24; $\delta 7.09-7.03(2 \mathrm{H}, \mathrm{m}), 6.86-6.79$ $(2 \mathrm{H}, \mathrm{m}), 6.53(1 \mathrm{H}, \mathrm{dd}, J=16.8,10.3 \mathrm{~Hz}$, min. rot.), $6.34(1 \mathrm{H}, \mathrm{dd}, J=16.8,2.1 \mathrm{~Hz}$, maj. rot.), 6.29 ($1 \mathrm{H}, \mathrm{dd}, J=16.8,2.2 \mathrm{~Hz}$, maj. rot.), 6.12 ($1 \mathrm{H}, \mathrm{dd}, J=16.7,10.3 \mathrm{~Hz}$, maj. rot.), 5.66 (1 H , dd, $J=10.3,2.2 \mathrm{~Hz}$, min. rot.), $5.44(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.2 \mathrm{~Hz}$, maj. rot.), 5.21 ($1 \mathrm{H}, \mathrm{dd}, J=8.0$, 3.2 Hz , min. rot.), $5.00(1 \mathrm{H}, \mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}$, maj. rot.), $3.83-3.78(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}$, maj. rot.), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{min}$. rot.), $3.72-3.65(1 \mathrm{H}, \mathrm{m}), 2.38-2.18(1 \mathrm{H}, \mathrm{m}), 2.01-1.80(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 165.4$ (maj. rot.), 164.4 (min. rot.), 158.8 (maj. rot.), 158.4 (min. rot.), 135.4 (maj. rot.), 135.0 (min. rot.), 129.0 (maj. rot.), 128.8 (min. rot.), 128.0 (min. rot.), 127.4 (maj. rot.), 126.7 (min. rot.), 126.6 (maj. rot.), 114.1 (maj. rot.), 113.9 (min. rot.), 60.8 (maj. rot.), 60.2 (min. rot.), $55.3,47.6$ (min. rot.), 47.1 (maj. rot.), 36.4 (maj. rot.), 34.0 (min. rot.), 23.9 (min. rot.), 21.6 (maj. rot.) ppm

HRMS (ES) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 232.1338$, found 232.1340 ($\Delta 0.9 \mathrm{ppm}$)

Scheme S2. Synthesis of hit fragment B01

6

B01

2-nitro-N-(2-(pyridin-2-yl)ethyl)aniline (4)

1-Fluoro-2-nitrobenzene ($0.42 \mathrm{~mL}, 4.0 \mathrm{mmol}$), 2-(2-aminoethyl)pyridine ($0.48 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol})$ were dissolved in DMF $(10 \mathrm{~mL})$ and stirred at tt for 24 h . The reaction mixture was then diluted with EtOAc (50 mL) and $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), then the combined organic layers were washed with $5 \% \mathrm{LiCl}$ $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by

FCC (12\%-100\% EtOAc/hexane) afforded the title compound 4 as a bright orange oil (0.83 g , 86\%).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(1 \mathrm{H}, \mathrm{ddd}, J=4.9,1.8,0.9 \mathrm{~Hz}), 8.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.12(1 \mathrm{H}$, dd, $J=8.7,1.7 \mathrm{~Hz}$), 7.61 ($1 \mathrm{H}, \mathrm{dt}, J=7.7,1.8 \mathrm{~Hz}$), $7.40(1 \mathrm{H}, \mathrm{ddd}, J=8.6,7.0,1.6 \mathrm{~Hz}), 7.20(1 \mathrm{H}$, d, $J=7.7 \mathrm{~Hz}$), $7.15(1 \mathrm{H}, \mathrm{ddd}, J=7.5,4.9,1.1 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.5,6.9,1.2 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{dt}, J=6.8,5.3 \mathrm{~Hz}), 3.17(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,149.8,145.4,136.8,136.3,132.0,126.9,123.5,121.9$, 115.3, 113.8, 42.7, 37.3 ppm

HRMS (ES) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 244.1086$, found 244.1090 ($\Delta 1.6 \mathrm{ppm}$)

N^{1}-(2-(pyridin-2-yl)ethyl)benzene-1,2-diamine (5)

Pyridine 4 (0.65 mg , 2.7 mmol) was dissolved in $\mathrm{MeOH}(6.0 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 65.0 \mathrm{mg})$ was added. The reaction mixture was degassed and flushed with H_{2} three times, then stirred at rt until reaction was complete by TLC. The reaction was filtered through celite to afford the title compound 5 as a dark brown oil ($0.56 \mathrm{~g}, 98 \%$), which was used without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $8.57(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 6.85-6.81(1 \mathrm{H}, \mathrm{m}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.71-6.66(2 \mathrm{H}, \mathrm{m})$, $3.64(3 \mathrm{H}, \mathrm{br}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.14(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,149.3,137.4,136.5,134.6,123.3,121.5,120.4,118.7$, 116.2, 112.0, 44.0, 37.5 ppm

HRMS (ES) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 214.1344$, found 214.1346 ($\Delta 0.2 \mathrm{ppm}$)

1-(2-(pyridin-2-yl)ethyl)-1 H-benzo[d]imidazol-2-amine (6)

Aniline 5 (0.57 mg , 2.7 mmol) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$, then cyanogen bromide (0.60 g , 4.0 mmol) was added to the solution. The reaction was stirred at rt for 2 h , and then concentrated in vacuo. The residue was diluted with EtOAc (60 mL) and $1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$, and the aqueous layer extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by FCC $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \% \mathrm{NH}_{4} \mathrm{OH}\right)$ afforded the title compound 6 as a purple-grey powder ($0.46 \mathrm{~g}, 73 \%$).
$\mathrm{R}_{f} 0.39$ ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \% \mathrm{NH}_{4} \mathrm{OH}$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(1 \mathrm{H}, \mathrm{ddd}, J=4.9,1.6,0.7 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.8 \mathrm{~Hz})$, $7.36(1 \mathrm{H}, \mathrm{m}), 7.16-7.03(4 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 5.41(2 \mathrm{H}, \mathrm{br}), 4.48(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz})$, $3.32(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.4, 154.5, 149.0, 141.8, 137.1, 134.1, 124.4, 122.3, 121.6, 119.7, 116.2, 107.5, 40.7, 36.6 ppm

HRMS (ES) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 239.1297$, found 239.1297 ($\Delta 0.0 \mathrm{ppm}$)

N-(1-(2-(pyridin-2-yl)ethyl)-1 H-benzo[d]imidazol-2-yl)acrylamide (B01)

Acroyl chloride ($31 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$) and the resulting solution was added dropwise to a stirring solution of benzimidazole 6 ($92 \mathrm{mg}, 0.39 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(81 \mu \mathrm{~L}, 0.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was then allowed to warm to rt , stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and then quenched by addition of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, then the combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by FCC ($25 \%-100 \%$ EtOAc/hexane) afforded the title compound as a white solid ($9.6 \mathrm{mg}, 10 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.30(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{ddd}, J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (td, $J=7.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=7.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,158.0,153.5,149.5,137.1,136.5,129.6,126.0,123.7$, 122.9, 122.8, 121.9, 111.2, 109.4, 42.0, 36.7 ppm

HRMS (ES) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 215.1297$, found 215.1297 ($\Delta 0.0 \mathrm{ppm}$)

NMR spectra for A01 and B01

Supplementary References

(1) Kozakov, D.; Grove, L. E.; Hall, D. R.; Bohnuud, T.; Mottarella, S. E.; Luo, L.; Xia, B.; Beglov, D.; Vajda, S. The FTMap Family of Web Servers for Determining and Characterizing Ligand-Binding Hot Spots of Proteins. Nat. Protoc. 2015, 10 (5), 733-755.
(2) Joung, J. Y.; Lee, H. Y.; Park, J.; Lee, J.-Y.; Chang, B. H.; No, K. T.; Nam, K.-Y.; Hwang, J. S. Identification of Novel Rab27a/Melanophilin Blockers by Pharmacophore-Based Virtual Screening. Appl. Biochem. Biotechnol. 2014, 172 (4), 1882-1897.
(3) Johnson, J. L.; Ramadass, M.; He, J.; Brown, S. J.; Zhang, J.; Abgaryan, L.; Biris, N.; Gavathiotis, E.; Rosen, H.; Catz, S. D. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation: Druggability of the Small GTPase Rab27a. J. Biol. Chem. 2016, 291 (50), 25965-25982.
(4) Baell, J.; Walters, M. A. Chemistry: Chemical Con Artists Foil Drug Discovery. Nature 2014, 513 (7519), 481-483.
(5) Tropea, J. E.; Cherry, S.; Waugh, D. S. Expression and Purification of Soluble His6Tagged TEV Protease. Methods Mol. Biol. 2009, 498, 297-307.
(6) Beilsten-Edmands, J., Winter, G., Gildea, R., Parkhurst, J., Waterman, D., and Evans, G. Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling. Acta Crystallogr. 2020, Sect. D76, 385-399.
(7) McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. "Phaser crystallographic software," J. Appl. Crystallogr. 2007, 40 (4), 658-674.
(8) Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Features and development of Coot, Acta Crystallogr. 2010, Sect. D Biol. Crystallogr., 66 (4), 486-501.
(9) Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., Vagin, A. A. REFMAC 5 for the refinement of macromolecular crystal structures, Acta Crystallogr., 2011, Sect. D Biol. Crystallogr., 67 (4), 355-367.
(10) V. B. Chen et al., MolProbity: All-atom structure validation for macromolecular crystallography, Acta Crystallogr. 2010, Sect. D Biol. Crystallogr., 66 (1), 12-21.
(11) Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., MacKerell, A. D. JrCHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 2017, 14, 71-73.
(12) Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. \& Klein, M. L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983, 79, 926.
(13) Bussi, G., Donadio, D. \& Parrinello, M. Canonical sampling through velocity rescaling. J Chem Phys 2007, 126, 14101-14107.
(14) Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., a DiNola \& Haak, J. R. Molecular dynamics with coupling to an external bath. J Chem Phys 1984, 81, 3684-3690.
(15) Darden, T., York, D. \& Pedersen, L. Particle mesh Ewald: An $N \log (\mathrm{~N})$ method for Ewald sums in large systems. J Chem Phys 1993, 98, 10089.
(16) Hess, B., Bekker, H., Berendsen, H. J. C. \& Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J Comp Chem 1997, 18, 1463-1472.
(17) Abrahama, M. J., Murtolad, T., Schulzb, R., Pall, S., Smith, J.C., Hessa, B., Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25.
(18) Craven, G. B.; Affron, D. P.; Allen, C. E.; Matthies, S.; Greener, J. G.; Morgan, R. M. L.; Tate, E. W.; Armstrong, A.; Mann, D. J. High-Throughput Kinetic Analysis for Target-Directed Covalent Ligand Discovery. Angew. Chemie - Int. Ed. 2018, 57 (19), 5257-5261.

