Supporting Information

Potency and metabolic stability: a molecular hybrid case in the design of novel PF74-like small molecules targeting HIV-1 capsid
 protein

Rajkumar Lalji Sahani ${ }^{\#, a}$, Thamina Akther ${ }^{\#, a}$, Maria E. Cilento ${ }^{b}$, Andres Emanuelli Castaner ${ }^{b}$, Huanchun Zhang ${ }^{b}$, Karen A. Kirby ${ }^{b, c}$, Jiashu Xie ${ }^{a}$, Stefan G. Sarafianos ${ }^{b, c}$, Zhengqiang Wang ${ }^{a, *}$ *
aCenter for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
bLaboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
cChildren's Healthcare of Atlanta, Atlanta, GA 30322, USA
\#These authors contributed equally.
*Corresponding author. Tel.: +1 6126267025.
E-mail address: wangx472@umn.edu (Zhengqiang Wang).

Table of Content

1. Control docking experiment of PF74 S2
2. Scheme 1: Synthesis of intermediates 7-9, 11-12 and 14-15. S3
3. Synthesis of intermediates $\mathbf{7 , 8}$ and spectral data S4
4. Synthesis of intermediate $\mathbf{9}$ and final compound $\mathbf{1 0}$ and spectral data S5
5. Synthesis of intermediates $\mathbf{1 1}, \mathbf{1 4}$ and spectral data S6
6. Synthesis of intermediates $\mathbf{1 2}, \mathbf{1 5}$ and spectral data S7
7. Scheme 2: Synthesis of intermediates 18, 19 and final compound 20 and S8spectral data
8. Synthesis of intermediates $\mathbf{1 8}, 19$ and spectral data S8
9. NMR spectra of compounds $\mathbf{7 - 2 0}$ S10

Figure S1 The control docking of PF74 to HIV-1 CA (PDB ID: 4XFZ). (A) The Glide score for the PF74 control docking was $-5.8 \mathrm{kcal} / \mathrm{mol}$. CANTD is shown in grey cartoon and adjacent CACTD in gold cartoon, with key residues around binding site shown as grey sticks, and ligands shown as cyan sticks. The nitrogen, and oxygen atoms are colored blue, and red, respectively.

Scheme S1: General synthetic scheme for the synthesis of intermediates 7-9, 11-12 and 14-15, and final compounds $\mathbf{1 0}, \mathbf{1 3}, \mathbf{4 a}-\mathbf{4 z}$, and 4aa-4gg.

Reagents and conditions: a) HATU, DIPEA, DCM, rt, $12 \mathrm{~h}, 98 \%$; b) TFA, DCM, $50{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, 98\%; c) Bromoacetic acid, HATU, DIPEA, DCM, rt, 12 h, 9 (61\%), 10 (8%); d) 1-Boc-piperazine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$; e) TFA, DCM, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$; f) 2-Bromobenzoic acid, HATU, DIPEA, DMF, rt, $12 \mathrm{~h}, 73 \%$; g) 1-Boc-3-oxopiperazine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $50{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 55 \%$; h) corresponding substituted benzoic acid, HATU, DIPEA, DMF, rt, 12 h or substituted benzoyl chloride, NEt_{3}, DCM, $12 \mathrm{~h}, \mathbf{4 a - 4 q}, \mathbf{4 u - 4 z}$, 4aa-4gg (50-98\%); i) $\mathrm{Fe}, \mathrm{CaCl}_{2}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=20: 1,70$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 4 \mathrm{r}-4 \mathrm{t}$ (39-62\%).

Synthesis of Intermediate 7: To a solution of N-Boc-phenyl alanine (5, 3 g, $12.03 \mathrm{mmol}, 1.0$ equiv.) in 50 mL of dichloromethane was added $\operatorname{HATU}\left(4.8 \mathrm{~g}, 12.63 \mathrm{mmol}, 1.05\right.$ equiv.) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 30 mins . Followed by addition of 4 -chloro- N methylaniline ($\mathbf{6}, 1.6 \mathrm{~mL}, 13.23 \mathrm{mmol}, 1.1$ equiv.) and DIPEA ($6.30 \mathrm{~mL}, 36.09 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was then slowly warmed to room temperature and stirred for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was concentrated, diluted with water, and extracted with ethyl acetate (3 X 50 mL). The combined organic layer was further washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by Combiflash on silica get using 5-15\% EtOAc/Hexane to get amide intermediate as white solid (7, 4.34 g, $11.16 \mathrm{mmol}, 98 \%)$.

White solid, tert-butyl (S)-(1-((4-chlorophenyl)(methyl)amino)-1-oxo-3-phenylpropan-2$y l)$ carbamate (7). Yield $98 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.98-6.93(\mathrm{~m}$, $2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=$ $13.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.9,154.9,141.1,136.6,133.9,129.9,129.6,128.8,128.6,126.9,79.8,52.3,40.2,37.6,28.4$. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}-\mathrm{Na}]^{+} 411.1446$, found: 411.1446.

Synthesis of Intermediate 8: To a solution of amide intermediate (7, $4.34 \mathrm{~g}, 11.16 \mathrm{mmol}, 1.0$ equiv.) in 50 mL of dichloromethane was added Trifluoroacetic acid ($8.5 \mathrm{~mL}, 111.6 \mathrm{mmol}, 10.0$ equiv.) at room temperature, and the reaction mixture was refluxed for at $50^{\circ} \mathrm{C}$ for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was carefully neutralized to pH 7 with a saturated sodium bicarbonate solution and the organic layer was separated. The aqueous layer was further extracted with dichloromethane ($2 \mathrm{X} \mathrm{50mL}$). The combined organic layer was further washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to get amine intermediate as yellow oil ($8,3.14 \mathrm{~g}, 10.90 \mathrm{mmol}, 98 \%$).

Yellow oil, (S)-2-amino-N-(4-chlorophenyl)-N-methyl-3-phenylpropanamide (8). Yield 98\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{dd}, J=7.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=12.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=13.0,6.6,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57-2.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,141.6,137.5,133.9,129.9$, $129.5,128.8,128.6,126.9,53.6,42.7,37.6$. HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}$ 289.1102, found: 289.1103 .

Synthesis of Intermediate 9 and final compound 10: To a solution of 2-bromoacetic acid (1.64 g, $11.99 \mathrm{mmol}, 1.1$ equiv.) in 20 mL of dichloromethane was added HATU ($4.35 \mathrm{~g}, 11.45 \mathrm{mmol}$, 1.05 equiv.) at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 30 mins. Followed by addition of a solution of amine intermediate ($\mathbf{8}, 3.14 \mathrm{~g}, 10.90 \mathrm{mmol}, 1.0$ equiv.) in 10 mL dichloromethane and DIPEA ($5.7 \mathrm{~mL}, 32.71 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was then slowly warmed to room temperature and stirred for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was concentrated, diluted with water, and extracted with ethyl acetate (3 X 50 mL). The combined organic layer was further washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by Combi-flash on silica get using 12-20\% EtOAc/hexane to get 2 bromoacetamide intermediate as white solid ($9,2.72 \mathrm{~g}, 6.65 \mathrm{mmol}, 61 \%$) and $35-40 \%$ EtOAc/hexane to get HOBT product ($10,0.41 \mathrm{~g}, 0.88 \mathrm{mmol}, 8 \%$).

White solid, (S)-2-(2-bromoacetamido)-N-(4-chlorophenyl)-N-methyl-3-phenylpropanamide (9). Yield $61 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{td}, J=8.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$,
$2.96(\mathrm{dd}, J=13.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9$, $164.9,140.8,135.9,134.2,130.0,129.6,128.8,128.7,127.3,51.8,39.5,38.8,37.7$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrClN}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{+} 409.0313$, found: 409.0317.

Synthesis of Intermediate 11, 14: To a solution of 2-bromoacetamide intermediate (9, $1 \mathrm{~g}, 2.44$ mmol, 1.0 equiv.) in 10 mL of N, N-dimethyl formamide was added 1-Boc-3-oxopiperazine (0.59 $\mathrm{g}, 2.93 \mathrm{mmol}$, 1.2 equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.67 \mathrm{~g}, 4.88 \mathrm{mmol}, 2.0$ equiv.) at room temperature, and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was concentrated, diluted with water, and extracted with ethyl acetate (3 X 20 mL). The combined organic layer was further washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by Combi-flash on silica get using 2-5\% $\mathrm{MeOH} / \mathrm{DCM}$ to get N -boc-3oxopiperazine acetamide intermediate as white solid (14, $0.72 \mathrm{~g}, 1.35$ mmol, 55\%).

White solid, tert-butyl (S)-4-(2-((1-((4-chlorophenyl)(methyl)amino)-1-oxo-3-phenylpropan-2-yl)amino)-2-oxoethyl)-3-oxopiperazine-1-carboxylate (14). Yield 55%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{dd}, J=6.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.70(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{tdd}, J=11.8,9.0,4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=13.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,167.3,166.8,153.8,140.9,136.0,134.2,130.1,129.5$, 128.8, 128.7, 127.2, 81.1, 77.4, 51.4, 50.4, 47.9, 39.1, 37.9, 28.5. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}$529.2212, found: 529.2209.

Synthesis of Intermediate 12, 15: To a solution of N-boc-3oxopiperazine acetamide intermediate ($\mathbf{1 4}, 0.72 \mathrm{~g}, 1.35 \mathrm{mmol}, 1.0$ equiv.) in 10 mL of dichloromethane was added Trifluoroacetic acid ($1.03 \mathrm{~mL}, 13.51 \mathrm{mmol}, 10.0$ equiv.) at room temperature, and the reaction mixture was refluxed for at $50^{\circ} \mathrm{C}$ for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was carefully neutralized to pH 7 with a saturated sodium bicarbonate solution and the organic layer was
separated. The aqueous layer was further extracted with dichloromethane (2 X 10 mL). The combined organic layer was further washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to get 3-oxopiperzine acetamide intermediate as white solid (15, $0.44 \mathrm{~g}, 1.03 \mathrm{mmol}$, 76%).

White solid, (S)-N-(4-chlorophenyl)-N-methyl-3-phenyl-2-(2-(piperazin-1yl)acetamido)propanamide (12). Yield 83%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{q}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H})$, $4.70(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{ddt}, J=18.3,12.6,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=13.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 1 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 415.1817$, found: 415.1815.

White solid, (S)-N-(4-chlorophenyl)-N-methyl-2-(2-(2-oxopiperazin-1-yl)acetamido)-3phenylpropanamide (15). Yield 95\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ ($\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 $(\mathrm{q}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{ddt}, J=18.3,12.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=$ $17.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=13.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,167.7,167.4,141.0,136.3,134.1,129.9,129.5,128.9,128.7,127.1,51.5$, 50.5, 48.9, 48.2, 42.5, 38.9, 37.9. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+} 429.1688$, found: 429.1691.

Scheme S2: General synthetic scheme for the synthesis of intermediates 18 and 19, and final compounds 20.

20

Reagents and conditions: a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, NMP, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 67 \%$; b) $\mathrm{KOH}, \mathrm{t}-\mathrm{BuOH}, 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$, dil. $\mathrm{HCl}, 76 \%$; c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}, 41 \%$.

Synthesis of Intermediate 18: To a solution of 2-chloro-3-fluoro-4-(trifluoromethyl)pyridine (17, $0.2 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.0$ equiv.) in 10 mL of N -methyl pyrrolidinone was added 3-chloro-5hydroxybenzonitrile ($\mathbf{1 6}, 0.19 \mathrm{~g}, 1.20 \mathrm{mmol}, 1.2$ equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.17 \mathrm{~g}, 1.20 \mathrm{mmol}, 1.2$ equiv.) and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. Upon completion, confirmed by TLC, the reaction mixture was cooled to room temperature, 20 mL of ice water was added to it slowly, and the solid was filtered. The solid product was further washed with 5 mL of $\mathrm{DMF} /$ water (1:1) to get N -boc-3oxopiperazine acetamide intermediate as white solid $(\mathbf{1 8}, 0.29 \mathrm{~g}, 0.87 \mathrm{mmol}$, 67\%).

White solid, 3-chloro-5-((2-chloro-4-(trifluoromethyl)pyridin-3-yl)oxy)benzonitrile (18): Yield $67 \% .^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}$, $1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$. HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N} 2 \mathrm{O}[\mathrm{M}+\mathrm{H}]^{-} 332.9804$, found.

Synthesis of Intermediate 19: To a solution of substituted 2-chloro pyridine intermediate (18, 0.29 $\mathrm{g}, 0.87 \mathrm{mmol}, 1.0$ equiv.) in 5 mL of t-butanol was added $\mathrm{KOH}(0.15 \mathrm{~g}, 2.61 \mathrm{mmol}, 3.0$ equiv.) and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 hours. Upon completion, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was diluted with water and extracted with dichloromethane to remove unreacted starting material. The aqueous layer was acidified with $10 \% \mathrm{HCl}$ to pH 2 to precipitate out the hydrolyzed product, which was filtered and washed with DCM to get 2-pyridinone intermediate ($\mathbf{1 9}, 0.22 \mathrm{~g}, 0.66 \mathrm{mmol}$, $76 \%)$.

White solid, 3-chloro-5-((2-oxo-4-(trifluoromethyl)-1,2-dihydropyridin-3-yl)oxy)benzoic acid (19): Yield 76\%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{d 6}$) $\delta 12.74$ (s, 1H), $7.63-7.58$ (m, 2H), 7.38 (s, 1H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClF}_{3} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$ 331.9943 , found 331.9955 .

1	1	17	1	1	1	1	1	1	1	1	1	1	1		1			1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 8

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{1 4}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 15

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{1 8}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 19

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{1 0}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 a}$

				战㝵							$\stackrel{1}{\mathbb{む}}$		dron						
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 b}$

 \mid

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 j}$

		17	1	1	1	1	1	11	100	1		1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1 H and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 41

\qquad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 n}$

				1								1	1	1	1	1						
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 40

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 t}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 x}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 y}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4aa

19	180	170	160	150	140	130	120	110	100	10		70	60					10
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4cc

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 4ee

				$\begin{aligned} & \text { Tr } \\ & \underset{\sim}{c} \end{aligned}$	$$	$$						T-TN T $\xrightarrow{9}$	$\begin{aligned} & \top \\ & \underset{\sim}{i} \end{aligned}$	地宁 $\stackrel{0}{\circ}$						
. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{4 f f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{1 3}$

