Supporting Information

I Supplemental tables
II Supplemental figures

III General synthetic methods
IV Synthesis scheme

V Synthesis of intermediate compounds S1-S17 and final compounds 1-6

VI NMR Spectra for intermediate compounds S1-S17 and final compounds 1-6
VII Representative NanoBRET IC ${ }_{50}$ curves

VIII K562 GI 50 curves
IX $\quad \mathrm{Ba} / \mathrm{F} 3 \mathrm{WT}$ ABL Gl_{50} curves

X Ba/F3 T315I ABL GI ${ }_{50}$ curves
XI References

I. Supplemental tables

Table S1. Percentage of 249 kinases inhibited by greater than $50 \%, 75 \%$, and 95% at a concentration of 1000 nM in the Nanosyn kinase profiling platform.

	$\mathbf{1}(\mathrm{h} 1-\mathrm{t} 1)$	$\mathbf{2}(\mathrm{h} 1-\mathrm{t} 2)$	$\mathbf{3}(\mathrm{h} 2-\mathrm{t} 1)$	$\mathbf{4}(\mathrm{h} 2-\mathrm{t} 2)$	$\mathbf{5}(\mathrm{h} 3-\mathrm{t} 1)$	$\mathbf{6}(\mathrm{h} 3-\mathrm{t} 2)$
Inhibition levels	Percentage of kinases inhibited at a concentration of 1000 nM at the corresponding level					
$>95 \%$	14.9%	14.9%	15.7%	8%	3.6%	4.4%
$>75 \%$	28.5%	24.9%	30.5%	20.9%	12.4%	12%
$>50 \%$	35.7%	32.1%	38.2%	27.3%	20.1%	18.9%

Table S2. Comparison of the percentage of 249 kinases inhibited by compounds 1, 3, and ponatinib at a level greater than $50 \%, 75 \%$, and 95% at a concentration of 100 nM

	$\mathbf{1}(\mathrm{h} 1-\mathrm{t} 1)$	$\mathbf{3}(\mathrm{h} 2-\mathrm{t} 1)$	Ponatinib
Inhibition levels	Percentage of kinases inhibited at a concentration of 100 nM at the corresponding level		
$>95 \%$	7.2%	5.2%	16.5%
$>75 \%$	14.5%	14.9%	23.3%
$>50 \%$	21.3%	21.3%	26.9%

II. Supplemental figures

Figure S1. Differences in kinase inhibition values between h 1 and h 2 compounds for the two different tail groups. The dotted lines mark 1 standard deviation from the mean (dashed black line). 6 kinases are common in the area between the dotted lines. Compounds with an h1 group preferentially inhibit 4 additional kinases (beyond the dotted lines in the positive direction). Compounds with an h2 group do not preferentially inhibit any kinases $>50 \%$.

Figure S2. Differences in kinase inhibition values between h2 and h3 compounds for the two different tail groups. The dotted lines mark 1 standard deviation from the mean (dashed black line). 3 kinases are common in the area between the dotted lines. Compounds with an h2 group preferentially inhibit 6 additional kinases (beyond the dotted lines in the positive direction). Compounds with an h3 group do not preferentially inhibit any kinases $>50 \%$.

III. General synthetic methods

Unless otherwise noted, all reagents were obtained from commercial sources and used without further purification. All ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Varian 400 or Inova 500 spectrometer. Mass Spectrometry (HRMS) was carried out on an Agilent 6230 TOF instrument.

IV. Synthesis scheme

S14
53\%
$\xrightarrow[\substack{80 \% \mathrm{EtOH} \\ 20 \% \mathrm{H}_{2} \mathrm{O}}]{\substack{\mathrm{Fe} \\ \text { cat. } \mathrm{HCl}}}$

S15
99\%

S13

S15

S17

Compound 4 53\%

V. Synthesis of intermediate compounds S1-S17 and final compounds 1-6

S1. ${ }^{1}$ TEA ($19 \mathrm{~mL}, 2.3 \mathrm{Eq}, 136 \mathrm{mmol}$) was added to a solution of 3-hydroxybenzaldehyde (11.9 g , 1.65 Eq, 97.5 mmol) in Ethyl acetate (54 mL). The solution was cooled on ice and degassed by bubbling nitrogen through it. To the reaction mixture was added a solution of oxalyl chloride (5 $\mathrm{mL}, 1 \mathrm{Eq}, 59 \mathrm{mmol}$) in Ethyl acetate (6 mL) over 45 min . The reaction mixture was stirred overnight and the precipitate was filtered and washed with ethyl acetate. The precipitate was resuspended in water (50 mL), heated at $50^{\circ} \mathrm{C}$ for 30 min , filtered while hot, washed with water, and dried to give bis(3-formylphenyl) oxalate ($\mathbf{S 1}$) $(11.84 \mathrm{~g}, 82 \%)$ as a cream solid that was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso) $\delta 10.07(\mathrm{~s}, 2 \mathrm{H}), 7.94$ (dt, J $=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (dd, $J=2.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.78(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (ddd, $J=8.1,2.5$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 299.0550$, found: 298.3252 .

S2. ${ }^{1}$ Nitric acid ($35 \mathrm{~g}, 25 \mathrm{~mL}, 13 \mathrm{Eq}, 0.56 \mathrm{~mol}$) and sulfuric acid ($92 \mathrm{~g}, 50 \mathrm{~mL}, 23 \mathrm{Eq}, 0.94 \mathrm{~mol}$) were added to a flask cooled at $-10^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C} .1-2 \mathrm{~g}$ of bis(3-formylphenyl) oxalate (S1) $(6.2 \mathrm{~g}$, $0.5 \mathrm{Eq}, 21 \mathrm{mmol}$) was added every 15 min . After the last addition, the reaction was poured over an ice/water mixture (500 mL), stirred for 30 min , and filtered. The precipitate was washed with water, suspended in methanol (125 mL) and stirred overnight. The solvent was evaporated in vacuo, and the residue suspended in water (90 mL) and stirred for 48 h . The pH was adjusted to 4 using 2 N NaOH , cooled on ice, filtered, and washed with 1 M citrate and water to give 5 -hydroxy-2-nitrobenzaldehyde (S2) ($4.532 \mathrm{~g}, 27.12 \mathrm{mmol}, 65 \%$) as a yellow cream powder. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, J=8.9, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (s, 1H).

S3. ${ }^{2}$ 5-hydroxy-2-nitrobenzaldehyde ($\mathbf{S 2}$) ($12.0 \mathrm{~g}, 1 \mathrm{Eq}, 71.8 \mathrm{mmol}$) was added to formamide (67.8 $\mathrm{g}, 60.0 \mathrm{~mL}, 21.0 \mathrm{Eq}, 1.51 \mathrm{~mol}$) to form a suspension. HCl gas (generated by adding HCl over sulfuric acid) was added to the suspension until soluble (15-30 min). The solution was cooled on ice and the addition of HCl was continued until saturated (60 min). A precipitate was observed after 45 min . The suspension was poured onto ice (150 g), cooled, and the pH adjusted to 4 using 6 N NaOH , filtered, and washed with water. The residue was suspended in water (75 mL), heated to boiling, stirred for 20 min , cooled and filtered to give N, N^{\prime}-((5-hydroxy-2nitrophenyl)methylene)diformamide (S3) ($10.195 \mathrm{~g}, 42.623 \mathrm{mmol}, 59.4 \%$) as a cream powder that contained impurities that were carried forward in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 11.05$ (s, 1H), 8.93 (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.04-7.97$ (m, 2H), 7.17 $-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (ddd, $J=9.1,6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$); HRMS (TOF MS ES+) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 262.0434$, found: 262.0433 .

S4. To a stirred suspension of N,N'-((5-hydroxy-2-nitrophenyl)methylene)diformamide (S3) (6.00 $\mathrm{g}, 1 \mathrm{Eq}, 25.1 \mathrm{mmol})$ in Ethanol (100 mL) / Water $(25.0 \mathrm{~mL})$ was added iron $(7.00 \mathrm{~g}, 5 \mathrm{Eq}, 125$ mmol) and a catalytic amount of concentrated HCl . The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered over a pad of celite while hot and washed with boiling ethanol (3 $x 75 \mathrm{~mL}$). The filtrate was evaporated in vacuo to give a thick yellow slurry that was cooled on ice and the pH adjusted to 5 . After 20 min , the precipitate was collected by filtration, washed with a small amount of water, and dried to give quinazolin-6-ol (S4) ($2.124 \mathrm{~g}, 14.53 \mathrm{mmol}, 57.9 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 10.46$ (s, 1H), $9.40(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.85$ ($\mathrm{m}, 1 \mathrm{H}$), $7.56(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS (TOF MS ES+) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 147.0553$, found: 147.0552.

S5. ${ }^{3}$ 4-amino-2-(trifluoromethyl)benzonitrile ($3.0 \mathrm{~g}, 1 \mathrm{Eq}, 16 \mathrm{mmol}$) was dissolved in dry THF (9 mL) and a solution of DIBAL-H in Hexane ($5.7 \mathrm{~g}, 40 \mathrm{~mL}, 1 \mathrm{molar}, 2.5 \mathrm{Eq}, 40 \mathrm{mmol}$) was added using a dropping funnel over 75 min keeping the temperature under $35^{\circ} \mathrm{C}$. The reaction mixture was stirred for another 10 min after complete addition and then carefully added to a mixture of methanol $(4.5 \mathrm{~mL})$ and a Rochelle salt solution ($3 \mathrm{M}, 39 \mathrm{~mL}$) over 1 h . The reaction mixture was then stirred at $50^{\circ} \mathrm{C}$ for 10 min after which diethyl ether (18 mL) was added and stirring continued for another 10 min . The two layers were separated and the organic layer was washed with brine, dried, and evaporated in vacuo to give 4-amino-2-(trifluoromethyl)benzaldehyde containing oligomeric impurities that were used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{dmso}) \delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=9.1$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$.

S6. ${ }^{3}$ Immediately prior to carrying out the reaction, oligomeric 4-amino-2(trifluoromethyl)benzaldehyde ($6.1 \mathrm{~g}, 1 \mathrm{Eq}, 32 \mathrm{mmol}$) was first converted to a monomer: 4-amino-2-(trifluoromethyl)benzaldehyde ($6.1 \mathrm{~g}, 1 \mathrm{Eq}, 32 \mathrm{mmol}$) was dissolved in Ethyl acetate (24 mL) and $1 \mathrm{~N} \mathrm{HCl}(31 \mathrm{~mL})$ was added. The solution was stirred rapidly for 5 min and then a solution of $1 \mathrm{~N} \mathrm{NaOH}(24.6 \mathrm{~mL})$ was added over 5 min and stirred for another 5 min . The mixture was poured into a serparatory funnel and the oprganic layer was separated and washed with 10% sodium chloride solution (15 mL). The organic layer was added to a 250 mL r.b. flask and diluted to ~ 48 mL . Separately, 1 -methylpiperazine ($16 \mathrm{~g}, 18 \mathrm{~mL}, 5 \mathrm{Eq}, 0.16 \mathrm{~mol}$) and pyridinium p toluenesulfonate ($0.81 \mathrm{~g}, 0.1 \mathrm{Eq}, 3.2 \mathrm{mmol}$) were dissolved in 16 mL ethyl acetate and added to the first flask. The reaction mixture was heated to $78^{\circ} \mathrm{C}$ and ethyl acetate was distilled off. After every 16 mL ethyl acetate that was distilled off, 16 mL fresh ethyl acetate was added to the flask. The distillation-addition process was continued about 10 times until 160 mL ethyl acetate was collected and re-added. The mixture was cooled to $50^{\circ} \mathrm{C}$ and sodium triacetoxyborohydride (15 $\mathrm{g}, 2.15 \mathrm{Eq}, 69 \mathrm{mmol}$) was added in portions over 1 h . After addition was complete, the reaction mixture was cooled to $10^{\circ} \mathrm{C}$ and quenched with water (48 mL) over 1 h , keeping the temperature under $20^{\circ} \mathrm{C}$. The organic layer was separated, washed with water ($2 \times 50 \mathrm{~mL}$), dried over anhydrous sodium sulfate, filtered, and evaporated to give 4-((4-methylpiperazin-1-yl)methyl)-3(trifluoromethyl)aniline ($5.62 \mathrm{~g}, 20.6 \mathrm{mmol}, 64 \%$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.38$ (d, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.31(\mathrm{~s}, 8 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 274.1526$, found: 274.1523.

S7. ${ }^{3}$ phenyl chloroformate ($0.8 \mathrm{~g}, 0.6 \mathrm{~mL}, 1.35 \mathrm{Eq}, 5 \mathrm{mmol}$) was added to THF (18 mL) in a 2neck r.b. flask fitted with a reflux condenser and heated to $65^{\circ} \mathrm{C}$. A solution of 4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)aniline ($1 \mathrm{~g}, 1 \mathrm{Eq}, 4 \mathrm{mmol}$) dissolved in THF (14 mL) was added dropwise to the flask over 45 min . After complete addition, the mixture was stirred for 15 min and then cooled to room temperature over 45 min . The precipitate was collected by filtration and rinsed with THF. The precipitate was resuspended in THF (15 mL), stirred, and filtered $(2 x)$ to give phenyl (4-((4-methylpiperazin-1-yl)methyl)-3(trifluoromethyl)phenyl)carbamate hydrochloride ($652 \mathrm{mg}, 1.52 \mathrm{mmol}, 40 \%$) as a cream powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 11.76$ (s, 1H), 10.80 (s, 1H), 8.11 (s, 1H), 8.03 (d, J=2.3 Hz, 1H), 7.81 (dd, J = 8.6, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51-7.39$ (m, 2H), $7.32-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.73-3.03$ ($\mathrm{m}, 8 \mathrm{H}$), 2.79 ($\mathrm{s}, 3 \mathrm{H}$); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 394.1737$, found: 394.1843.

S8. ${ }^{4}$ quinolin-6-amine ($10.0 \mathrm{~g}, 1 \mathrm{Eq}, 69.4 \mathrm{mmol}$) was added to conc. $\mathrm{HCl}(30 \mathrm{~mL})$ and cooled in an ice water bath. A solution of sodium nitrite ($5.02 \mathrm{~g}, 1.05 \mathrm{Eq}, 72.8 \mathrm{mmol}$) in water (8 mL) was added dropwise. The reaction mixture was stirred for 1 h at room temperature, then cooled on ice, and a solution of tin(II) chloride dihydrate ($32.9 \mathrm{~g}, 2.1 \mathrm{Eq}, 146 \mathrm{mmol}$) in conc. $\mathrm{HCl}(30 \mathrm{~mL})$ was added. The reaction was stirred at room temperature for 2 h after addition, then filtered and washed with ethanol and ether. The precipitate was suspended in ethanol (150 mL), stirred at boiling, and filtered while hot to give 6-hydrazineylquinoline hydrochloride ($12.57 \mathrm{~g}, 64.25 \mathrm{mmol}$, 92.6 \%) as an orange solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 9.31$ (s, 1H), 9.03 (dd, $J=5.1,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.70$ ($\mathrm{m}, 1 \mathrm{H}$), 7.48 (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}$); HRMS (TOF MS ES+) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 160.0869, $\left[\mathrm{M}-\mathrm{NH}_{2}+\mathrm{H}\right]^{+}: 144.0677$ found: 160.0870 and 144.0680, respectively.

S9. ${ }^{4}$ To a mixture of 6-hydrazineylquinoline hydrochloride ($5.0 \mathrm{~g}, 1 \mathrm{Eq}, 26 \mathrm{mmol}$) and 4,4-dimethyl3 -oxopentanenitrile ($3.2 \mathrm{~g}, 1 \mathrm{Eq}, 26 \mathrm{mmol}$) in Ethanol (120 mL) was added sulfuric acid ($13 \mathrm{~g}, 7.2$ $\mathrm{mL}, 17.8$ molar, $5 \mathrm{Eq}, 0.13 \mathrm{~mol}$) and heated to reflux. The reaction was monitored by TLC. After removal of solvent, water (100 mL) and DCM (120 mL) was added and the mixture stirred. The pH was adjusted to $6-7$ using 6 N NaOH . The layers were separated and the aqueous layer was extracted with DCM ($2 \times 50 \mathrm{~mL}$). The combined organics were washed with sat. NaHCO3 (1 x 100 mL), brine ($1 \times 100 \mathrm{~mL}$), dried over anhydrous sodium sulfate, filtered, and concentrated to give a crude residue. The reside was loaded onto silica and purified using a biotage isolera system (KP-SIL 100 g column, 30% then $60 \% \mathrm{EtOAc} / \mathrm{Hex}$) to give 3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-amine ($3.1023 \mathrm{~g}, 11.647 \mathrm{mmol}, 46 \%$) as a red oil that solidifies on standing. ${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso) $\delta 8.88$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.41 (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.14 (d, $J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.12-8.04$ (m, 2H), 7.55 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (d, $J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26$ (s, 9H); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]+$: 267.1604 , found: 267.1800.

S10. In a 2-neck round bottom flask, phenyl chloroformate ($588 \mathrm{mg}, 0.47 \mathrm{~mL}, 1.25 \mathrm{Eq}, 3.75 \mathrm{mmol}$) was added to THF (15 mL) and heated to reflux at $65^{\circ} \mathrm{C}$. A solution of 3 -(tert-butyl)-1-(quinolin6 -yl)-1H-pyrazol-5-amine ($800 \mathrm{mg}, 1 \mathrm{Eq}, 3 \mathrm{mmol}$) in THF (12 mL) was added dropwise over 45 min . After addition was complete, the reaction was stirred for 15 min , then cooled to room temperature over 45 min . The product precipitated and was collected by filtration and washed with a small amount of THF and ether. The precipitate was re-suspended in ether (10 mL), stirred for 15 min , collected by filtration, washed with ether and dried to give phenyl (3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)carbamate hydrochloride ($888 \mathrm{mg}, 70 \%$) as a cream powder. ${ }^{1} \mathrm{H}$ NMR (500 MHz, dmso) $\delta 10.42$ (s, 1H), 9.24 (dd, $J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54-8.41(\mathrm{~m}, 2 \mathrm{H}), 8.32(\mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H})$, $7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 387.1816$ and $[\mathrm{M}+\mathrm{Na}]^{+}: 409.1635$, found: 387.1807 and 409.1635 , respectively.

S11. 3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-amine ($450 \mathrm{mg}, 1 \mathrm{Eq}, 1.69 \mathrm{mmol}$) was dissolved in DCM (6 mL) and cooled in an ice-brine bath. DMAP ($10 \mathrm{mg}, 0.048 \mathrm{Eq}, 82 \mu \mathrm{~mol}$) and pyridine ($401 \mathrm{mg}, 410 \mu \mathrm{~L}, 3 \mathrm{Eq}, 5.07 \mathrm{mmol}$) were added followed by the dropwise addition of a solution of 2,2,2-trichloroethyl carbonochloridate ($501 \mathrm{mg}, 326 \mu \mathrm{~L}, 1.4 \mathrm{Eq}, 2.37 \mathrm{mmol}$) in DCM (2 mL) over 15 min . The reaction was stirred for $1 \mathrm{~h}, \mathrm{DCM}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were added and stirring continued for 10 min . The two layers were separated and the organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated. The crude material was loaded onto silica and purified on a Biotage isolera system ($25 \% \mathrm{EtOAc} / \mathrm{Hex} \rightarrow 55 \% \mathrm{EtOAc} / \mathrm{Hex}$)
to give 2,2,2-trichloroethyl (3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)carbamate (196 mg, $444 \mu \mathrm{~mol}, 26.3 \%$) as a glassy white solid on extensive drying. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 8.89$ (dd, $J=4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.17 (dd, $J=8.5,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.95-7.78$ (m, 2H), 7.46 (dd, $J=8.3,4.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 9 \mathrm{H})$, NMR contains other unknown impurities; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 441.0647$, found: 441.0635 .

S12. quinazolin-6-ol ($4.02 \mathrm{~g}, 1 \mathrm{Eq}, 27.5 \mathrm{mmol}$) and cesium carbonate ($10.8 \mathrm{~g}, 1.2 \mathrm{Eq}, 33.0 \mathrm{mmol}$) were added to DMF (140 mL) followed by 1 -fluoro-4-nitrobenzene $(4.66 \mathrm{~g}, 3.50 \mathrm{~mL}, 1.2 \mathrm{Eq}, 33.0$ $\mathrm{mmol})$. The reaction was stirred at $70^{\circ} \mathrm{C}$ for 1 h . The reaction was cooled to room temperature, poured into 550 mL water, and the product was extracted with ethyl acetate ($3 \times 120 \mathrm{~mL}$). The combined organics were washed with brine ($1 \times 250 \mathrm{~mL}$), dried over anhydrous sodium sulfate, and evaporated. The crude material was loaded onto silica and purified on a Biotage isolera system (purified in 2 batches, each on a 100 g KP-SIL column, step gradient $40 \% \mathrm{EtOAc} / \mathrm{Hex}$, then $90 \% \mathrm{EtOAc} / \mathrm{Hex}$) to give 6-(4-nitrophenoxy)quinazoline (S12) ($6.15 \mathrm{~g}, 23.0 \mathrm{mmol}, 83.7 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 9.39-9.33(\mathrm{~m}, 2 \mathrm{H}), 8.33-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dt}$, $J=9.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=2.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}$, 2 H); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 268.0717$, found: 268.0726.

S13. To a suspension of 6-(4-nitrophenoxy)quinazoline (S12) (4.61 g, $1 \mathrm{Eq}, 17.3 \mathrm{mmol}$) in Ethanol $(72.0 \mathrm{~mL})$ / Water (18.0 mL) was added iron ($4.82 \mathrm{~g}, 5 \mathrm{Eq}, 86.3 \mathrm{mmol}$) and a catalytic amount of conc. HCl . The reaction was heated at $80^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was filtered while hot over a pad of celite, and washed with EtOAc ($2 \times 100 \mathrm{~mL}$). The filtrate was evaporated, the residue dissolved in EtOAc (250 mL), and washed with sat. $\mathrm{NaHCO} 3(2 \times 125 \mathrm{~mL})$, brine ($1 \times 125 \mathrm{~mL}$), dried over anhydrous sodium sulfate, filtered, and evaporated to give 4-(quinazolin-6-yloxy)aniline (S13) ($3.9625 \mathrm{~g}, 16.701 \mathrm{mmol}, 96.8 \%$) as a red oil that formed a yellow solid after extensive drying and trituration with DCM/Hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 9.21(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H})$, 8.01 (d, J = 9.2 Hz, 1H), 7.69 (dd, $J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13-7.06$ (m, 1H), 6.96 (d, J=8.7 Hz, 2 H), 6.76 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.74\left(\mathrm{~s}, 2 \mathrm{H}\right.$); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 238.0975, found: 238.1089.

S14. quinolin-6-ol ($1.52 \mathrm{~g}, 1 \mathrm{Eq}, 10.5 \mathrm{mmol}$) and cesium carbonate ($3.75 \mathrm{~g}, 1.1 \mathrm{Eq}, 11.5 \mathrm{mmol}$) were added to DMF (52 mL). 1-fluoro-4-nitrobenzene ($1.55 \mathrm{~g}, 1.2 \mathrm{~mL}, 1.05 \mathrm{Eq}, 11.0 \mathrm{mmol}$) was added and the reaction stirred at $70{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, poured into water, and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate, and evaporated to give a residue that was purified on a Biotage isolera system (100% Hexane and then $50 \% \mathrm{EtOAc} / \mathrm{Hex} \rightarrow 100 \% \mathrm{EtOAc}$) to give 6-(4-nitrophenoxy)quinoline ($1.47 \mathrm{~g}, 5.52 \mathrm{mmol}, 52.7 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 8.90$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.22 (s, 1H), $8.21-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.39$ ($\mathrm{m}, 3 \mathrm{H}$), 7.11 - 7.05 (m, 2H); HRMS (TOF MS ES+) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 267.0764$, found: 267.0806 .

S15. To a suspension of 6-(4-nitrophenoxy)quinoline ($1000.0 \mathrm{mg}, 1 \mathrm{Eq}, 3.7557 \mathrm{mmol}$) in Ethanol $(16 \mathrm{~mL}) /$ Water $(4.0 \mathrm{~mL})$ was added iron ($1.049 \mathrm{~g}, 5 \mathrm{Eq}, 18.779 \mathrm{mmol}$) and a catalytic amount of conc. HCl . The reaction was heated at $70^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was filtered while hot over a pad of celite, and washed with EtOAc. The filtrate was evaporated and 10% potassium carbonate solution was added. The suspension was extracted with EtOAc, and the organic layer washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated to give 4-(quinolin-6-yloxy)aniline ($876 \mathrm{mg}, 3.71 \mathrm{mmol}, 98.7 \%$) as a tan powder. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 8.78$ (dd, $J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd,
$J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H})$, $6.76-6.69(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 237.1022, found: 237.1066.

S16. quinolin-7-ol ($82 \mathrm{mg}, 1 \mathrm{Eq}, 0.5649 \mathrm{mmol}$) and cesium carbonate ($221 \mathrm{mg}, 1.2 \mathrm{Eq}, 0.6779$ mmol) were added to DMF (3 mL). 1-fluoro-4-nitrobenzene ($0.072 \mathrm{~mL}, 1.2 \mathrm{Eq}, 0.6779 \mathrm{mmol}$) was added and the reaction stirred at $70{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to room temperature, poured into water, and extracted with ethyl acetate (3x). The organic layer was washed with 10% potassium carbonate solution, brine, dried over anhydrous sodium sulfate, and evaporated to give a residue that was purified on a Biotage isolera system ($20 \% \mathrm{EtOAc} / \mathrm{Hex} \rightarrow$ $40 \% \mathrm{EtOAc} / \mathrm{Hex}$) to give 7-(4-nitrophenoxy)quinoline ($90 \mathrm{mg}, 60 \%$) as a light-yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 8.92$ (dd, $\left.J=4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27-8.22(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (dd, $J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (dd, J $=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18-7.11(\mathrm{~m}, 2 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 267.0764, found: 267.0780.

S17. To a suspension of 7-(4-nitrophenoxy)quinoline ($95.0 \mathrm{mg}, 1 \mathrm{Eq}, 357 \mu \mathrm{~mol}$) in Ethanol (1.6 mL) / Water (0.40 mL) was added iron ($99.6 \mathrm{mg}, 5 \mathrm{Eq}, 1.78 \mathrm{mmol}$) and a catalytic amount of conc. HCl . The reaction was heated at $70^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was filtered while hot over a pad of celite, and washed with EtOAc. The filtrate was evaporated and 10% potassium carbonate solution was added. The suspension was extracted with EtOAc, and the organic layer washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated to give 4-(quinolin-7-yloxy)aniline ($77 \mathrm{mg}, 0.33 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 8.80$ (d, J = 4.3 $\mathrm{Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}$, 2 H); HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237.1022$, found: 237.1094.

Compound 1. 4-(quinazolin-6-yloxy)aniline ($260 \mathrm{mg}, 1 \mathrm{Eq}, 1.10 \mathrm{mmol}$), phenyl (4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamate hydrochloride ($471 \mathrm{mg}, 1 \mathrm{Eq}$, $1.10 \mathrm{mmol})$, and DIPEA ($153 \mathrm{mg}, 206 \mu \mathrm{~L}, 1.08 \mathrm{Eq}, 1.18 \mathrm{mmol}$) were added to DMSO (1.5 mL) and the mixture heated at $70^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $50^{\circ} \mathrm{C}$ and $\mathrm{KOH}(80$ mg in 1 mL water) was added. The resultant mixture was transferred to water (25 mL) and extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated to give a residue that was loaded onto $\mathrm{C}-18$ silica gel and purified using a Biotage Isolera system (C-18 Ultra 30 g column, 30% Acetonitrile/Water $\rightarrow 100 \%$ Acetonitrile) to give 1-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-(4-(quinazolin-6-yloxy)phenyl)urea ($117.8 \mathrm{mg}, 219.5 \mu \mathrm{~mol}, 20.0 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) δ 9.50 (s, 1H), 9.21 (s, 1H), 9.05 (s, 1H), 8.90 (s, 1H), 8.06 (d, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 (d, J = 2.2 Hz , $1 \mathrm{H}), 7.82$ (dd, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14$ (m, 2 H), 3.53 (s, 2H), 2.37 (s, 8H), 2.17 (s, 3H); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , dmso) $\delta-58.01$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 537.2221$, found: 537.2489.

Compound 2. 4-(quinazolin-6-yloxy)aniline (S13) ($272.5 \mathrm{mg}, 1 \mathrm{Eq}, 1.149 \mathrm{mmol}$) and phenyl (3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)carbamate hydrochloride (S10) ($485.7 \mathrm{mg}, 1 \mathrm{Eq}$, $1.149 \mathrm{mmol})$ were added to DMSO (1.9 mL) followed by DIPEA ($160.3 \mathrm{mg}, 0.22 \mathrm{~mL}, 1.08 \mathrm{Eq}$, 1.240 mmol). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ under nitrogen for 3.5 h . The solution was cooled to $50^{\circ} \mathrm{C}$ and $\mathrm{KOH}(\sim 1.3 \mathrm{Eq}=64 \mathrm{mg}$ in 2 mL) was added, followed by 2 mL ethyl acetate. After stirring for 5 min a cream precipitate formed that was collected by vacuum filtration, washed with water ($3 \times 3 \mathrm{~mL}$), ethyl acetate ($3 \times 3 \mathrm{~mL}$), and dried. The precipitate was loaded
onto C-18 silica gel and purified using a Biotage Isolera system (C-18 Ultra 30 g column, 75% Acetonitrile/Water \rightarrow 100\% Acetonitrile) to give 1-(3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)-3-(4-(quinazolin-6-yloxy)phenyl)urea (compound 2) ($203.7 \mathrm{mg}, 384.6 \mu \mathrm{~mol}, 33.49 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 9.48$ (s, 1H), $9.20(\mathrm{~s}, 1 \mathrm{H}), 9.11$ (s, 1H), 8.96 (dd, $J=4.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.45(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=5.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97 (dd, $J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (dd, $J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 -7.46 (m, 2H), 7.39 (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.46$ (s, 1H), 1.32 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, dmso) δ 161.42, 159.66, 156.87, 153.80, 151.68, 151.04, 149.60, 146.38, 145.88, $137.76,136.41,136.28,130.18,130.10,127.99,127.50,126.53,125.55,122.24,122.08,120.79$, $120.08,110.25,110.15,95.79,32.16,30.23$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 530.2291$, found: 530.2287.

Compound 3. 4-(quinolin-6-yloxy)aniline (S15) (1121 mg, 1.2 Eq, 4.745 mmol) and phenyl (4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamate hydrochloride (S7) (1700 mg, $1.000 \mathrm{Eq}, 3.955 \mathrm{mmol}$) were added to DMSO (6 mL) in a r.b. flask. DIPEA ($536.6 \mathrm{mg}, 723 \mu \mathrm{~L}$, 1.05 Eq, 4.152 mmol) was then added and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to $50^{\circ} \mathrm{C}$ and a KOH (4Eq in $\sim 2 \mathrm{~mL}$) solution and water (17 mL) was added. The product was extracted with EtOAc (2x), washed with brine, dried over anhydrous sulfate and evaporated. The crude residues was purified using a Biotage Isolera system (KP-SIL, 10% Hexane/DCM $\rightarrow 6 \%$ Ammonia in methanol (7N)/10\% Hexane/DCM) to give 1-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-(4-(quinolin-6-yloxy)phenyl)urea ($1014.9 \mathrm{mg}, 1.8950 \mathrm{mmol}, 47.93$ \%) (compound 3) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) δ 8.84 (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, J= $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=29.5 \mathrm{~Hz}, 8 \mathrm{H}), 2.28(\mathrm{~s}$, 3H); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , dmso) δ-58.06; HRMS (TOF MS ES+) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$ [M+H]+: 536.2268, found: 536.2256.

Compound 4. 4-(quinolin-6-yloxy)aniline (S15) ($48.0 \mathrm{mg}, 1 \mathrm{Eq}, 0.203 \mathrm{mmol}$) and 2,2,2trichloroethyl (3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)carbamate (S11) (89.7 mg, 1.00 Eq , 0.203 mmol) were added to DMSO (1 mL) in a vial. DIPEA ($52.5 \mathrm{mg}, 70.7 \mu \mathrm{~L}, 2 \mathrm{Eq}, 406 \mu \mathrm{~mol}$) was then added and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ overnight. The reaction was cooled, poured into EtOAc (30 mL) and washed with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{~mL})$, brine ($1 \times 30 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulfate, filtered, and evaporated to give a crude residue that was laded onto a KP-SIL silica gel column and purified using a Biotage Isolera system ($70 \% \mathrm{EtOAc} / \mathrm{Hex} \rightarrow 100 \% \mathrm{EtOAc} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{EtOAc}$) to give 1-(3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)-3-(4-(quinolin-6-yloxy)phenyl)urea (compound 4) (57.0 mg, $108 \mu \mathrm{~mol}, 53.1 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso) $\delta 9.07$ (s, 1H), 8.96 (dd, $J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.79 (dd, $J=4.2,1.7 \mathrm{~Hz}$, 1 H), 8.58 (s, 1H), 8.48 (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.28-8.21$ (m, 1H), 8.17 (dd, $J=5.8,3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 8.02(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ $7.43(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 529.2347, found: 529.2342.

Compound 5. 4-(quinolin-7-yloxy)aniline (S17) ($23.6 \mathrm{mg}, 1 \mathrm{Eq}, 99.9 \mu \mathrm{~mol}$) and phenyl (4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamate hydrochloride (S7) ($42.9 \mathrm{mg}, 1$ Eq, $99.9 \mu \mathrm{~mol}$) were added to DMSO (1 mL) in a vial. DIPEA ($13.9 \mathrm{mg}, 18.8 \mu \mathrm{~L}, 1.08 \mathrm{Eq}, 108$ $\mu \mathrm{mol})$ was then added and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. The reaction was cooled to r.t. and directly purified using a Biotage Isolera system (C-18 Ultra column, 40\%

Acetonitrile/Water \rightarrow 75\% Acetonitrile/Water) to give 1-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-(4-(quinolin-7-yloxy)phenyl)urea (compound 5) ($20.4 \mathrm{mg}, 38.1 \mu \mathrm{~mol}$, 38.1%) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , dmso) $\delta 9.05$ (s, 1H), 8.88 (s, 1H), 8.82 (dd, J = 4.2, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.42$ (ddd, $J=13.1,8.6,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 1 H), $7.18-7.11$ (m, 2H), $3.53(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 8 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , dmso) $\delta-$ 58.00; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 536.2268$, found: 536.2263.

Compound 6. 4-(quinolin-7-yloxy)aniline (S17) ($24.0 \mathrm{mg}, 1 \mathrm{Eq}, 102 \mu \mathrm{~mol}$) and 2,2,2-trichloroethyl (3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)carbamate (S11) ($44.9 \mathrm{mg}, 1 \mathrm{Eq}, 102 \mu \mathrm{~mol}$) were added to DMSO (0.5 mL) in a vial. DIPEA ($26.3 \mathrm{mg}, 35.4 \mu \mathrm{~L}, 2 \mathrm{Eq}, 203 \mu \mathrm{~mol}$) was then added and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ overnight. The reaction was cooled, poured into EtOAc (20 mL) and washed with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{~mL})$, brine ($1 \times 30 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulfate, filtered, and evaporated to give a crude residue that was laded onto a KP-SIL silica gel column and purified using a Biotage Isolera system (70\% $\mathrm{EtOAc} / \mathrm{Hex} \rightarrow 100 \% \mathrm{EtOAc} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{EtOAc}$) to give 1-(3-(tert-butyl)-1-(quinolin-6-yl)-1H-pyrazol-5-yl)-3-(4-(quinolin-7-yloxy)phenyl)urea (compound 6) ($34.8 \mathrm{mg}, 65.8 \mu \mathrm{~mol}, 64.8 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, dmso) ठ 9.09 (s, 1H), 8.96 (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.82$ (dd, $J=4.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, $8.04-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (ddd, $J=17.0,8.6$, $3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$; HRMS (TOF MS ES +) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 529.2347, found: 529.2339.
VI. NMR Spectra for intermediate compounds S1-S17 and final compounds 1-6

S1

S2

S3

S4

S5

S6

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

Compound 1

Compound 2

Compound 3

Compound 4

Compound 5

Compound 6

VII. Representative NanoBRET IC ${ }_{50}$ curves

	Compound 3
EC50	$4.643 \mathrm{e}-008$

	Compound6
EC50	$7.497 \mathrm{e}-007$

VIII. K562 GI ${ }_{50}$ curves

Compound 3

IX. Ba/F3 WT ABL GI ${ }_{50}$ curves

Compound 3

Compound 4

X. Ba/F3 T315I ABL GI ${ }_{50}$ curves

XI. References

1. Griffin, D. R.; Kasko, A. M., Photodegradable macromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 2012, 134 (31), 13103-7.
2. Albert, A.; Hampton, A., Analogues of 8 -Hydroxyquinoline Having Additional Cyclic Nitrogen Atoms .1. Preparative. J Chem Soc 1952, (Dec), 4985-4993.
3. Shieh, W.-C.; McKenna, J.; Sclafani, J. A.; Xue, S.; Girgis, M.; Vivelo, J.; Radetich, B.; Prasad, K., Syntheses of a Triad of Flt3 Kinase Inhibitors: From Bench to Pilot Plant. Organic Process Research \& Development 2008, 12 (6), 1146-1155.
4. Deciphera WO2006/71940 A2, 2006.
