Supporting Information

Development of 2-desoxystreptamine-nucleobase conjugates for the inhibition of oncogenic miRNAs production

Thi Phuong Anh Tran,^{‡,a} Sylvain Poulet,^a Mélanie Pernak,^a Anita Rayar,^a Stéphane Azoulay,^a Audrey Di Giorgio,^a Maria Duca^{*,a}

^a Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN), Nice, France

*Corresponding author: maria.duca@univ-cotedazur.fr

[‡]Present address: Department of Chemistry Engineering, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Khanh Hoa, Viet Nam

Figure S1. Artificial nucleobases D_3 and D_4 and their interactions with DNA (or RNA) base pairs.^{1, 2}

Figure S2. Chemical structures of alkynes 10a-h employed in this study.

Figure S3. Dissociation constants (K_D) curves for compounds 5a-h binding to pre-miR-372.

Figure S4. Inhibition activity (IC₅₀) curves for compounds **5d-h** against pre-miR-372 maturation.

ID	K _D ^[a]	IC ₅₀ ^[b]	K _D ^[a]	IC ₅₀ ^[b]	K _D ^[a]	IC ₅₀ ^[b]
	pre-miR-21	pre-miR-21	pre-miR-18a	pre-miR-18a	pre-miR148a	pre-miR-148a
5 a	15.9	no inhibition	no binding	no inhibition	50.8	no inhibition
5b	61.4	no inhibition	no binding	no inhibition	no binding	no inhibition
5c	144	no inhibition	no binding	no inhibition	no binding	no inhibition
5d	0.628	53.8	0.899	> 500	1.70	21.7
5e	2.59	> 500	not determined	not determined	not determined	not determined
5f	18.0	> 500	6.28	177	7.90	> 500
5g	2.50	no inhibition	3.31	20.3	3.12	18.2
5h	2.23	62.6	6.72	89.5	6.35	85.3
9	1.2	79.8	1.99	76.0	1.99	28.0

Table S1. Dissociation constants (K_D) and inhibition activities (IC_{50}) for compounds **5a-h** and **9** against pre-miR-21, pre-miR-18a and pre-miR-148a.

[a] Binding studies were performed on 5'-FAM-pre-miR-372 in buffer A (20 mM Tris–HCl (pH 7.4), 12 mM NaCl, 2.5 mM MgCl₂ and 1 mM DTT). The K_D values are given with an uncertainty of ±10%. [b] The IC₅₀ experiments were performed in the presence of 50 nM premiR-372 beacon 5'-labeled with FAM and 3'-labeled with dabcyl (DAB) and 0.5 U of recombinant Dicer in buffer A (20 mM Tris–HCl (pH 7.4), 12 mM NaCl, 2.5 mM MgCl₂ and 1 mM DTT). The IC₅₀ values are given with an uncertainty of ±10%.

Synthetic procedures

General methods have been described in the main manuscript. Compounds **10a-e** have been prepared following a previously reported procedure.³

1,3-Bis-N-(tert-butyloxycarbonyl)-2-deoxytreptamine (1). A solution of neamine tetrahydrochloride (2.0 g, 4.27 mmol) in aqueous 48% HBr (12 mL) was heated under reflux for 2 days. The reaction mixture became colored rather quickly. The solution was evaporated in vacuo to dryness, 10 mL of water were added and again evaporated to dryness. This process was repeated twice to insure complete removal of the excess of HBr. TLC indicated that the major component of the crude product was 2deoxystreptamine, $R_f = 0.16$ (*i*PrOH/EtOH/CHCl₃/NH₄OH 4/5/2/5). The crude product was then converted into compound 1 without further purification by the following procedure: sodium hydroxide (2.56 g, 64.0 mmol), Boc₂O (9.30 g, 42.6 mmol) in a mixture of dioxane and water (60 mL, 3:1) were added to the crude product. This solution was heated at 60° C for 1h, then concentrated *in vacuo* and the residue was partitioned between water (30 mL) and EtOAc (60 mL). The aqueous layer was separated and extracted with EtOAc (2×25mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. A flash column chromatography using a mixture CH₂Cl₂/MeOH 95:5 as the eluent afforded the desired product 1 as a white solid in 50% yield (773 mg). $R_f = 0.26$ $(CH_2Cl_2/MeOH 95:5);$ ¹H NMR (200 MHz, CD₃OD) δ (ppm): 3.40-3.30 (m, 3H), 3.20-3.10 (m, 2H), 2.10-2.00 (m, 1H), 1.45-1.44 (br, 18H), 1.30-1.15 (m, 1H); ¹³C NMR 50 MHz (CD₃OD) δ (ppm): 158.2, 80.1, 78.3, 76.3, 52.7, 35.9, 28.8; MS (ESI) m/z = 363.4 [M+H]⁺ (theoretical m/z 363.4).

1,3-Bis-*N*-(*tert*-butyloxycarbonyl)-5,6-*O*-cyclohexylidene-2-deoxystreptamine (2). Compound 1 (100 mg, 0.28 mmol) was treated with 1,1-dimethoxycyclohexane (273 µL, 1.82 mmol) in dry DMF (2 mL), in the presence of *p*-TsOH monohydrate (2.6 mg, 0.015 mmol) at 55°C and 50 mbar for 1 h. The reaction was then quenched by the addition of Et₃N (1 mL). After evaporation, the crude product was purified by silica gel chromatography using a miwture CHX/EtOAc 6:4 as the eluent to afford desired compound **2** as a white solid in 98% yield (122 mg). R_f = 0.39 (CHX/EtOAc 1:1); ¹H NMR (200 MHz, CD₃OD) δ (ppm): 3.75-3.35 (m, 5H), 2.20-2.10 (m, 1H), 1.65 (br, 8H), 1.45 (br, 20H), 1.35-1.25 (m, 1H); ¹³C NMR (50 MHz, CD₃OD) δ (ppm): 157.2, 156.7, 111.9, 81.1, 79.3, 78.8, 73.0, 36.5, 36.3, 27.7, 25.1, 23.7; MS (ESI): *m/z* 465.6 [M+Na]⁺ (theoretical *m/z* 465.3).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-deoxystreptamine-4-O-[2'-

azidoethyl]ether (3). To a solution of compound 2 (750 mg, 1.70 mmol) in dry THF (15 mL), NaH (60% dispersion in mineral oil, 340 mg, 8.5 mmol) and 2-azidoethyl-p-toluensulfonate⁴ (820 mg, 3.4 mmol) were added under argon atmosphere. The reaction mixture was stirred at 30°C under argon for 3h, then concentrated under reduced pressure. The residue was dissolved in Et₂O (50 mL) and washed with a saturated solution of NaHCO₃ (10 mL) and then with water (30 mL). The organic layer was separated and dried over MgSO₄. Flash chromatography (CHX/EtOAc 85:15) afforded **3** as a white solid in 33% yield (287 mg). $R_f = 0.44$ (CHX/EtOAc 7:3); ¹H NMR (200 MHz, CD₃OD) δ (ppm): 4.20-4.00 (m, 2H), 3.80-3.60 (m, 2H), 3.50-3.35 (m, 5H), 2.20-2.05 (m, 1H), 1.75-1.60 (m, 8H); 1.40-1.50 (m,

21H); ¹³C NMR (50 MHz, CD₃OD) δ (ppm): 157.0, 129.1, 112.0, 81.1, 79.3, 78.8, 68.4, 51.7, 51.1, 36.5, 36.2, 27.7, 27.0, 25.1, 23.9; MS (ESI) m/z = 534.0 [M+Na]⁺ (theoretical *m*/z 534.3).

1,3-Bis-*N*-(*tert*-butyloxycarbonyl)-5,6-*O*-cyclohexylidene-2-deoxystreptamine-4-*O*-[4-(adenyl-*N*-methyl)]ethyltriazole (4a). General procedure A was applied to compound 3 and *N*-9-propargyl adenine **10a** (37.4 mg, 0.216 mmol) and the reaction mixture was stirred at room temperature for 4h, then heated at 50°C overnight. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 98:2 as the eluent affording desired compound **4a** as a yellow solid in 87% yield (117 mg). $R_f = 0.55$ (CH₂Cl₂/MeOH 95:5); ¹H NMR (200 MHz, CD₃OD) δ (ppm): 8.25 (s, 1H), 8.22 (s, 1H), 8.16 (s, 1H), 5.56 (s, 2H), 4.70-4.50 (m, 2H), 4.20-4.10 (m, 1H), 4.00-3.90 (m, 1H), 3.70-3.60 (m, 1H), 3.55-3.35 (m, 4H), 2.20-2.00 (m, 1H), 1.60-1.20 (m, 29H); ¹³C NMR (50 MHz, CD₃OD) δ (ppm): 161.4, 157.7, 157.3, 154.0, 150.5, 142.5, 126.2, 113.9, 113.0, 82.0, 81.8, 80.3, 70.1, 56.4, 55.8, 54.8, 52.0, 39.6, 37.4, 28.8, 26.0, 24.8; MS (ESI) m/z = 685.3 [M+H]⁺ (theoretical *m/z* 685.4).

1,3-Bis-*N*-(*tert*-butyloxycarbonyl)-5,6-*O*-cyclohexylidene-2-deoxystreptamine-4-*O*-[4-(uracil-*N*-methyl)]ethyltriazole (4b). General procedure A was applied to compound 3 and *N*-1-propargyluracil 10b (32.4 mg, 0.216 mmol) and the reaction mixture was stirred at room temperature for 3h. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 98:2 as the eluent affording desired compound 4b as a yellow solid in 74% yield (95.9 mg). $R_f = 0.53$ (CH₂Cl₂/MeOH 95/5); ¹H NMR (200 MHz, CD₃OD) δ (ppm): 8.10 (s, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 5.67 (d, *J* = 8.1 Hz, 1H), 5.00 (d, *J* = 4.2 Hz, 2H), 4.60-4.50 (m, 2H), 4.25-4.15 (m, 1H), 4.00-3.95 (m, 1H), 3.75-3.60 (m, 5H), 2.20-2.00 (m, 1H), 1.60-1.30 (m, 29H); ¹³C NMR (50 MHz, CD₃OD) δ (ppm): 179.8, 166.7, 157.9, 157.8, 152.5, 146.9, 126.5, 113.0, 102.6, 81.9, 80.4, 79.7, 55.8, 52.8, 52.0, 44.2, 37.4, 37.2, 28.8, 26.1, 24.9; MS (ESI) *m/z* = 662.1 [M+H]⁺ (theoretical *m/z* 662.3).

1,3-Bis-*N*-(*tert*-butyloxycarbonyl)-5,6-*O*-cyclohexylidene-2-deoxystreptamine-4-*O*-[4-(cytosyl-*N*-methyl)]ethyltriazole (4c). General procedure **A** was applied to compound **3** and *N*-1-propargylcytosine **10c** (32.6 mg, 0.216 mmol) and the reaction mixture was stirred at room temperature for 3h, then heated at 50°C overnight. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 95:5 as the eluent affording desired compound **4c** as a yellow solid in 46% yield (59.7 mg). $R_f = 0.23$ (CH₂Cl₂/MeoH 98/2); ¹H NMR (200 MHz, CD₃OD) δ (ppm): 8.06 (s, 1H), 7.72 (d, 1H, *J* = 8.1 Hz), 5.87 (d, 1H, *J* = 8.1 Hz), 5.02 (s, 2H), 4.60-4.50 (m, 3H), 4.25-4.15 (m, 1H), 4.00-3.95 (m, 1H), 3.75-3.65 (m, 1H), 3.50-3.35 (m, 3H), 2.10-2.00 (m, 1H), 1.70-1.50 (m, 10H), 1.50-1.30 (m, 19H); ¹³C NMR (50 MHz, CD₃OD) δ (ppm): 169.5, 157.8, 157.7, 151.0, 141.5, 1325., 126.7, 126.0, 113.1, 94.5, 91.9, 81.9, 80.3, 79.7, 52.8, 51.9, 51.2, 37.5, 37.2, 30.7, 28.8, 26.1, 24.9; MS (ESI) m/z = 661.4 [M+H]⁺ (theoretical *m/z* = 661.4).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-deoxystreptamine-4-O-[4-((3-

benzamidophenyl)imidazol-N-methyl)]ethyltriazole (4d). General procedure A was applied to compound 3 and to compound 10d (63.6 mg, 0.216 mmol) and the reaction mixture was stirred at 50°C

for 1h. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 99:1 as the eluent affording desired compound **4d** as a yellow oil in 87% yield (138 mg). $R_f = 0.35$ (CH₂Cl₂/MeOH 95:5); ¹H NMR (200 MHz, Acetone- d_6) δ ppm: 9.57 (br s, 1H), 8.27 (br s, 1H), 8.18 (s, 1H), 8.03 (d, J = 8.0 Hz, 3H), 7.76 (d, J = 8.0 Hz, 2H), 7.55-7.45 (m, 5H), 7.30-7.25 (m, 1H), 5.38 (s, 2H), 4.58 (d, J = 4.2 Hz, 2H), 4.15-4.00 (m, 2H), 3.75-3.50 (m, 5H), 2.30-2.20 (m, 1H), 1.70-1.50 (m, 8H), 1.50-1.30 (m, 21H); ¹³C NMR (50 MHz, Acetone- d_6) δ ppm: 166.3, 157.6, 156.3, 156.0, 140.2, 136.1, 132.3, 129.5, 129.2, 128.4, 125.2, 125.1, 121.5, 119.6, 112.1, 81.5, 79.0, 78.9, 69.8, 66.1, 57.7, 51.3, 49.3, 40.3, 37.4, 37.0, 36.9, 29.4, 25.6, 24.5; MS (ESI): m/z = 813.3 [M+H]⁺ (theoretical *m/z* 813.3).

1,3-Bis-*N*-(*tert*-butyloxycarbonyl)-5,6-*O*-cyclohexylidene-2-deoxystreptamine-4-*O*-[4-(phenyl-(3-butylurea)-imidazol-*N*-methyl)]ethyltriazole (4e). General procedure A was applied to compound 3 and to compound **10g** (64.0 mg, 0.216 mmol). The reaction mixture was stirred at 50°C for 1h. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 98:2 as the eluent affording desired compound **4g** as a yellow solid in 61% yield (96.5 mg); $R_f = 0.35$ (CH₂Cl₂/MeOH 98:2); ¹H NMR (400 MHz, CD₃OD) δ ppm: 8.16 (s, 1H), 8.00-7.90 (m, 1H), 7.75-7.65 (m, 2H), 7.45-7.35 (m, 2H), 7.24 (s, 1H), 5.37 (s, 2H), 4.70-4.50 (m, 2H), 4.25-4.15 (m, 1H), 4.00-3.90 (m, 1H), 3.70-3.55 (m, 2H), 3.50-3.40 (m, 3H), 3.22 (t, J = 8.0 Hz, 2H), 2.20-2.10 (m, 1H), 1.70-1.50 (m, 8H), 1.50-1.25 (m, 25H), 0.97 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ ppm: 157.0, 156.4, 156.3, 149.7, 142.8, 140.0, 128.8, 124.7, 121.1, 118.8, 117.7, 115.5, 113.1, 111.7, 80.8, 80.4, 78.9, 68.9, 53.4, 51.3, 39.2, 36.0, 35.8, 32.0, 27.4, 27.3, 24.7, 23.4, 19.7, 12.8; MS (ESI): m/z = 807.3 [M+H]⁺ (theoretical *m/z* 807.6).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-deoxystreptamine-4-O-[4-((3-(2-

naphthamido)phenyl)-imidazol-*N*-methyl)]ethyltriazole (4f). General procedure A was applied to compound 3 and to compound 10f (75.8 mg, 0.216 mmol). The reaction mixture was stirred at 50°C overnight. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 95:5 as the eluent affording desired compound 4f as a yellow solid in 34% yield (54.5 mg); $R_f = 0.35$ (CH₂Cl₂/MeOH 95/5); ¹H NMR (200 MHz, CD₃OD) δ ppm: 8.54 (s, 1H), 8.20-8.10 (m, 2H), 8.10-7.90 (m, 5H), 7.80-7.70 –m, 2H), 7.65-7.55 (m, 3H), 7.43 (s, 1H), 5.36 (s, 2H), 4.70-4.50 (m, 5H), 4.20-4.10 (m, 1H), 4.00-3.90 (m, 1H), 3.60-3.50 (m, 2H), 2.10-2.00 (m, 1H), 1.70-1.30 (m, 29H); ¹³C NMR (50 MHz, CD₃OD) δ ppm: 169.0, 157.7, 136.4, 134.0, 133.5, 130.1, 129.4, 129.2, 129.0, 128.8, 127.9, 125.2, 121.3, 113.1, 82.3, 81.7, 80.3, 97.2, 70.2, 52.7, 52.0, 37.4, 37.2, 28.8, 28.7, 26.0, 24.8; MS (ESI): m/z = 863.1 [M+H]⁺ (theoretical *m/z* 863.2).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-deoxystreptamine-4-O-[4-((3-

aminophenyl)-imidazol-*N*-methyl)]ethyltriazole (4g). General procedure A was applied to compound **3** and to compound **10g** (42.5 mg, 0.216 mmol). The reaction mixture was stirred at 50°C for 1h. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 99:1 as the eluent affording desired compound **4g** as a yellow oil in 71% yield (98.6

mg); $R_f = 0.59$ (CH₂Cl₂/MeOH 90:10); ¹H NMR (200 MHz, CD₃OD) δ ppm: 8.13 (s, 1H), 7.81 (s, 1H), 7.45 (s, 1H), 7.20-7.00 (m, 3H), 6.70-6.60 (m, 1H), 5.33 (s, 2H), 4.65-4.50 (m, 2H), 4.50-4.40 (m, 1H), 4.00-3.90 (m, 1H), 3.75-3.60 (m, 2H), 3.50-3.40 (m, 3H), 2.10-2.00 (m, 1H), 1.75-1.45 (m, 29H); ¹³C NMR (50 MHz, CD₃OD) δ ppm: 167.4, 158.0, 157.9, 157.7, 154.5, 150.1, 147.7, 138.8, 130.4, 126.0, 119.4, 116.2, 113.1, 90.2, 82.2, 81.8, 76.5, 70.3, 59.7, 52.7, 52.0, 50.3, 42.9, 37.4, 28.8, 26.0, 24.8; MS (ESI): m/z = 709.4 [M+H]⁺ (theoretical *m/z* 709.5).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-deoxystreptamine-4-O-[4-(2-oxo-2-

((4-phenylthiazol-2-yl)amino)-*N*-ethylpropanamide)]ethyltriazole (4h). To a solution of **3** (20.0 mg, 0.04 mmol) in DMF (3.0 mL), compound **10h** (9.0 mg, 0.044 mmol, 1.1 eq.), CuI (152.4 mg, 0.8 mmol, 2.0 eq.) and DiPEA (0.3 mL, 2.0 mmol, 5.0 eq.) were added. The reaction mixture was stirred at room temperature during 5 h. The solvent was evaporated under reduced pressure and the reaction mixture was then solubilized in CH₂Cl₂ and washed with water. The organic phases were dried with Na₂SO₄, filtered and evaporated under reduced pressure. The mixture was purified by flash chromatography on a silica gel column using a mixture of CH₂Cl₂/ MeOH (9:1) to give **4h** as a white solid in 53% yield (20.0 mg). $R_f = 0.4$ (CH₂Cl₂/MeOH 9:1); ¹H RMN (400MHz, CD₃OD) δ (ppm): 7.90-7.80 (m, 3H), 7.40-7.30 (m, 3H), 7.30-7.25 (m, 1H), 4.60-4.50 (m, 2H), 4.20-4.10 (m, 3H), 4.00-3.90 (m, 1H), 3.75-3.65 (m, 1H), 3.60-3.40 (m, 4H), 3.10-3.00 (m, 2H), 2.75-2.65 (m, 2H), 2.15-2.05 (m, 1H), 1.70-1.60 (m, 8H), 1.50-1.40 (m, 21H); ¹³C (100MHz, CD₃OD) δ (ppm): 167.1, 157.7, 135.9, 129.6, 128.9, 127.1, 113.1, 108.6, 81.9, 80.3, 74.0, 70.2, 55.5, 52.7, 51.8, 43.4, 37.4, 37.3, 36.0, 30.8, 28.8, 28.7, 26.1, 24.9, 24.8, 22.4; MS (ESI) *m/z* = 768.2 [M+Na]⁺ (theoretical *m/z* 768.9).

1,3-Bis-N-(tert-butyloxycarbonyl)-5,6-O-cyclohexylidene-2-(1S,3R,4S,5R,6R)-deoxystreptamine-

4-*O*-[**4**-((**3**-benzamidophenyl)imidazol-*N*-methyl)]ethyltriazole (**8**). To a solution of compound **7** (50 mg, 0.0987 mmol) in CH₃CN (4 mL) were added compound **7** (37.4 mg, 0.124 mmol, 1.3 eq.), CuI (44.6 mg, 0.234 mmol, 2eq.) and DIPEA (125 μL, 0.705 mmol, 6 eq.) and the reaction mixture was stirred at 50°C for 1h. After removal of the solvent under reduced pressure, flash chromatography was performed using a mixture CH₂Cl₂/MeOH 99:1 as the eluent affording desired compound **8** as a yellow oil in 55% yield (44 mg). R_f = 0.35 (CH₂Cl₂/MeOH 95:5); ¹H NMR (200 MHz, CD₃OD) *δ* ppm: 8.14 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 3H), 7.90 (br s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.60-7.50 (m, 5H), 7.40-7.30 (m, 1H), 5.36 (s, 2H), 4.65-4.60 (m, 2H), 4.20-4.10 (m, 21), 4.00-3.95 (m, 1H), 3.70-3.50 (m, 2H), 3.50-3.35 (m, 3H), 2.10-2.00 (m, 1H), 1.70-1.50 (m, 8H), 1.50-1.30 (m, 21H); ¹³C NMR (50 MHz, CD₃OD) *δ* ppm: 167.8, 158.8, 145.5, 139.8, 138.4, 136.2, 135.0, 134.9, 131.8, 129.4, 129.1, 128.6, 128.3, 125.3, 120.2, 118.8, 113.6, 80.6, 80.3, 77.4, 76.7, 66.6, 51.9, 51.7, 47.1, 41.6, 35.1, 28.4, 25.5, 22.3; MS (ESI): m/z = 813.3 [M+H]⁺ (theoretical *m/z* 813.3).

2-(1S,3R,4S,5R,6R)-deoxystreptamine-4-O-[4-((3-benzamidophenyl)imidazol-N-

methyl)]ethyltriazole (9). Compound **8** (44 mg, 0.0542 mmol) was dissolved in CH_2Cl_2 (1 mL) and H_2O (0.5 mL) in the presence of TFA (208 µL, 2.71 mmol, 50 eq.). Pure compound **9** was obtained after precipitation in CH_2Cl_2 and Chelex resin treatment as a white solid in 97% yield (40.0 mg). Retention

time 2.78 min; ¹H NMR (400 MHz, CD₃OD) δ ppm: 8.28 (s, 1H), 8.00-7.95 (m, 3H), 7.70-7.50 (m, 8H), 5.60 (s, 2H), 4.72 (t, *J* = 2.0 Hz, 2H), 4.50-4.45 (m, 1H), 4.20-4.15 (m, 1H), 3.45-3.35 (m, 4H), 3.15-3.10 (m, 1H), 2.45-2.40 (m, 1H), 1.80-1.75 (m, 1H); ¹³C NMR (125 MHz, CD₃OD) δ ppm: 169.5, 141.4, 136.4, 133.6, 131.4, 130.9, 130.1, 129.1, 123.5, 83.0, 77.7, 75.1, 73.5, 72.2, 49.9, 49.7, 49.6, 30.2; MS (ESI) *m/z* 533.3 (theoretical 533.3).

Synthesis of N-(3-(1-(prop-2-yn-1-yl)-1H-imidazol-4-yl)phenyl)-2-naphthamide (10f).

4-(3-Nitrophenyl)-*N*-1-propargylimidazole (11). To a solution of 4-(3-nitrophenyl)imidazole³ (1 g, 5.3 mmol) in acetone (50 mL) was added K₂CO₃ (2.2 g, 15.9 mmol). After stirring at 60°C for 30min, TBAI (98 mg) and 80% weight solution of propargyl bromide in toluene (0.95 mL, 10.6 mmol) were added respectively. The reaction mixture was stirred at 60°C under reflux overnight. After removal of the solvent under reduced pressure, the residue was purified by flash chromatography using a mixture CH₂Cl₂/MeOH 95:5 as the eluent to afford compound **11** as a yellow solid in 56% yield (67 mg). R_f = 0.42 (CH₂Cl₂/MeOH 98:2); ¹H NMR (200 MHz, CDCl₃) δ (ppm): 8.56 (br s, 1H), 8.20-8.10 (m, 2H), 7.66 (s, 1H), 7.60-7.50 (m, 2H), 4.79 (d, *J* = 2.6 Hz, 2H), 2.56 (s, 1H); ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 146.5, 140.7, 137.5, 135.9, 130.7, 129.7, 121.6, 119.7, 115.9, 76.1, 75.7, 36.9; MS (ESI) *m*/*z* = 228.0 [M+H]⁺ (theoretical *m*/*z* 228.0).

4-(3-Aminophenyl)-*N*-1-propargylimidazole (10g). A mixture of 11 (100 mg, 0.53 mmol), iron powder (148 mg, 2.65 mmol) and NH₄Cl (113 mg, 2.12 mmol) was refluxed in aqueous ethanol (4.5 mL of alcohol and 1.25 mL of water) at 80°C for 1h. The reaction mixture was treated with saturated aqueous NaHCO₃ and filtered through filter paper, then concentrated under reduced pressure. The orange solution was concentrated *in vacuo* and the residue was extracted with EtOAc (5 mL×2). The organic phase was dried over MgSO₄ and then concentrated to afford 10g in 94% yield (98.2 mg). R_f = 0.33 (CH₂Cl₂/MeOH 98:2); ¹H NMR (200 MHz, CDCl₃) δ (ppm): 7.59 (s, 1H), 7.27 (s, 1H), 7.20-7.10 (m, 3H), 6.60-6.50 (m, 1H), 4.74 (br s, 2H), 2.51 (br s, 1H); ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 146.7, 142.7, 136.7, 134.8, 129.5, 115.4, 114.5, 113.8, 111.6, 74.9, 36.5; MS (ESI) *m/z* = 198.0 [M+H]⁺ (theoretical *m/z* 198.1).

N-(3-(1-(prop-2-yn-1-yl)-1*H*-imidazol-4-yl)phenyl)-2-naphthamide (10f). To a solution of 10g (77 mg, 0.34 mmol) in CH₂Cl₂ (1.6 mL) were added naphthoyl chloride (77.8 mg, 0.4 mmol), pyridine (41 μ L, 0.51 mmol). The reaction mixture was stirred at room temperature for 3h. The solvent was then concentrated under reduced pressure and the obtained residue purified on a silica gel column using a mixture CH₂Cl₂/acetone 98:2 as the eluent to afford compound 10g as a yellow solid in 67% yield (80 mg). R_f = 0.51 (30% CHX/EtOAc 7/3); ¹H NMR (200 MHz, CD₃OD) δ ppm: 8.80 (s, 1H), 8.54 (s, 1H), 8.22 (s. 1H), 8.05-7.95 (m, 5H), 7.75-7.70 (m, 1H), 7.65-7.60 (m, 2H), 7.55-7.50 (m, 1H), 5.16 (d, *J* =

2.6 Hz, 2H), 3.26 (t, J = 2.6 Hz, 1H); ¹³C NMR (50 MHz, CD₃OD) δ ppm: 169.0, 149.2, 148.2, 147.6, 141.7, 140.9, 136.4, 134.0, 133.1, 130.9, 130.1, 129.5, 129.2, 129.1, 128.8, 128.0, 125.1, 122.9, 122.6, 119.2, 78.1, 76.4, 39.3; MS (ESI): m/z = 352.3 [M+H]⁺ (theoretical m/z 352.2).

N-(2-oxo-2-(4-phenylthiazol-2-ylamino)ethyl)pent-4-ynamide (10h). Compound 10h was synthesized starting from N-(1-oxo-4-pentyn-1-yl)-glycine (250 mg, 1.61 mmol) that was dissolved in DMF (10 mL). Then, HOSu (204 mg, 1.1 eq) and EDC (339 mg, 1.1 eq) were added. The mixture was stirred at room temperature during 30 min. Then, 2-amino-4-phenylthiazole (312 mg, 1.1 eq) was added. The mixture was stirred overnight at room temperature. The solvent was then removed under reduced pressure and the crude product washed with DCM and water (3 x 50 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The product was purified by flash chromatography on a silica gel column using a mixture of DCM/MeOH 99 :1 and desired compound 10h was obtained as a yellow solid in 53% yield (266 mg). $R_f = 0.24$ (DCM/MeOH 99:1); ¹H NMR (400 MHz, CD₃OD) δ ppm: 7.80-7.70 (m, 2H), 7.40-7.30 (m, 3H), 7.30-7.25 (m, 1H), 4.13 (s, 2H), 2.60-2.50 (m, 4H), 2.30 (s, 1H); ¹³C NMR (100 MHz, CD₃OD) δ ppm: 174.7, 169.4, 159.1, 151.3, 135.9, 129.6, 128.9, 127.0, 108.7, 83.5, 70.3, 43.4, 35.8, 15.5; MS (ESI): $m/z = 352.3 \text{ [M+H]}^+$ (theoretical m/z 352.2).

Biochemical procedures

RNA and biochemicals. The buffers and solutions used in the fluorescence experiments were filtered through Millipore filters (0.22 mm; GP ExpressPLUS membrane). Human recombinant Dicer enzyme (Genlantis) had a concentration of 0.5 U/ μ L. 1. Tris(hydroxymethyl)aminomethane hydrochloride (Tris–HCl) 20 mM (pH 7.4), containing 12 mM NaCl, 3 mM MgCl₂, and 1 mM DTT) was used for the FRET assays and K_D determination.

RNA oligonucleotides. Oligonucleotides were purchased from IBA GmbH (Goettingen, Germany). RNA folding was performed in TRIS buffer upon incubation at 90°C during 2 minutes, 4°C during 10 minutes and slowly returning to room temperature during 15 minutes.

For pre-miR-372:

5'-FAM-

GUGGGCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCGACAUU UGAGCGUCAC-3'-DABCYL (ODN1) 5'-FAM-

GUGGGCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCGACAUU UGAGCGUCAC-

3' (ODN2)

For pre-miR-21

5'-FAM-

UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGA UGGGCUGUCUGACA-3'-DABCYL (ODN3)

5'-FAM-

UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGA UGGGCUGUCUGACA-3' (ODN4)

For pre-miR-18a

5'-FAM-

UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAG UGCUCCUUCUGGCA-3'-DABCYL (ODN5)

5'-FAM-

UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUAGAUUAGCAUCUACUGCCCUAAG UGCUCCUUCUGGCA-3' (ODN6)

For pre-miR-148a

5'-FAM-

GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAAGUCAGUGCACUACAGA ACUUUGUCUC-3'-DABCYL (ODN7)

5'-FAM-

GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAAGUCAGUGCACUACAGA ACUUUGUCUC-3' (ODN8)

DNA duplex sequence

5'-CGTTTTAAATTTTGC-3' (ODN9) and 5'-GCTTTTAAATTTTGC-3'

FRET Dicer assay.

The Dicer assay was performed in 384-well plates (Greiner bio-one) in a final volume of 40 μ L by using a 5070 EpMotion automated pipetting system (Eppendorf). Each experiment was performed in duplicate and repeated three times. A beacon of ODN1, ODN3, ODN5 or ODN7 at 50 nM was used in each well and the reaction mixtures containing inhibitors were preincubated at room temperature for 30 min. Human recombinant Dicer (0.25 U; Genlantis) or *Escherichia coli* RNase III (0.25U, Ambion) were added to the reaction mixtures. When cell lysates were used instead of recombinant enzymes, HEK293 whole cell lysates were purchased from Tebu-Bio. For the IC₅₀ experiments, each ligand was added in 12 dilutions (0.244 pM–500 mM). The fluorescence increase was measured after 4 h incubation at 37°C on a GeniosPro (Tecan) with excitation and emission filters of $l=485\pm10$ and 535 ± 15 nm, respectively. Each point was measured (10x) with an integration time 500 ms and was averaged. The inhibition data were analyzed by using Prism 5 (GraphPad Software) by using nonlinear regression that followed the equation: $Y = bottom + (top - bottom)/1 + \frac{10[(Log IC50-X) \times hills slope]}{100}$.

Binding experiments and K_D determination.

Binding experiments were performed in 384-well plates (Greiner bio-one) in a final volume of 60 mL by using a 5070 EpMotion automated pipetting system (Eppendorf). Each experiment was performed in duplicate and repeated at least three times. A beacon (ODN2, ODN4, ODN6 and ODN8) of 10 nM was used in each well. Each ligand was added in 15 dilutions (0.030 nM–0.5 mM). The fluorescence increase measured after 4 h on a GeniosPro (Tecan) with excitation and emission filters of l=485±10 and 535±15 nm, respectively. Each point was measured (10x) with an integration time of 500 ms and was averaged. The binding data were analyzed by using Graphpad Prism 5 software. Unless otherwise stated, the binding profiles were well modeled by using a simple model that assumed 1:1 stoichiometry.

In the competition experiments, 100 eq. of tRNA structured as pre-miR-372 beacon were added to the RNA solution and 100 eq. of duplex DNA (mixture of ODN9 and ODN10 incubated at 90°C during 5 minutes then slowly returned at room temperature) were added to the RNA solution.

Molecular modeling and docking.

The MC-Fold/MC-Sym pipeline (http://www.major.iric.ca/MC-Pipeline/) is a web-hosted service for RNA secondary and tertiary structure prediction. The pipeline consists in uploading RNA sequence to MC-Fold, which output secondary structures that are directly input to MC-Sym, which outputs tertiary structures. Pre-miRNA sequences were obtained from the miRBase database (http://www.mirbase.org/). The hairpin loop of pre-miR-372 was chosen to predict the 3D structure using the MC-Fold/MC-Sym pipeline. Energy optimization was further conducted on the 3D model using the TINKER Molecular Modeling Package (http://dasher.wustl.edu/tinker/). For docking with AutoDock,20 polar hydrogen atoms, Kollman united charges and solvent parameters were applied to the RNA using pmol2q script (http://www.sourcefiles.org/Scientific/Biology/Proteins/pmol2q_2.3.0.tar.gz). This script converts the .pdb file format of the RNA template to the .pdbqt file format that is compatible with AutoDock program version 4 (http://autodock.scripps.edu/). Pre-miR-372/9 (or Neo-D₃) molecular docking was conducted using AutoDock program version 4. The rotational bonds of the ligand were treated as flexible, whereas the receptor was kept rigid. Grid box was fixed in order to include the entire RNA sequence. RNA-ligand interactions were analyzed and visualized using Discovery Studio Visualizer version 4.1 (http://accelrys.com/products/discoverystudio/).

Figure S6. ¹H NMR, ¹³C NMR and HRMS spectra of compound 5b.

110 100 f1 (ppm)

Figure S7. ¹H NMR, ¹³C NMR and HRMS spectra of compound 5c.

Figure S8. ¹H NMR, ¹³C NMR and HRMS spectra of compound 5d.

Figure S9. ¹H NMR, ¹³C NMR and HRMS spectra of compound 5e.

Figure S11. ¹H NMR, ¹³C NMR and HRMS spectra of compound 5g.

Figure S12. ¹H NMR, ¹³C NMR, HRMS spectra and HPLC profile of compound 5h.

References

1. Kiessling, L. L.; Griffin, L. C.; Dervan, P. B., Flanking sequence effects within the pyrimidine triple-helix motif characterized by affinity cleaving. *Biochemistry* **1992**, *31* (10), 2829-34.

2. Wang, W.; Purwanto, M. G.; Weisz, K., CG base pair recognition by substituted phenylimidazole nucleosides. *Org Biomol Chem* **2004**, *2* (8), 1194-8.

3. Vo, D. D.; Staedel, C.; Zehnacker, L.; Benhida, R.; Darfeuille, F.; Duca, M., Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. *ACS Chem Biol* **2014**, *9* (3), 711-21.

4. Choi, H.; Shirley, H. J.; Hume, P. A.; Brimble, M. A.; Furkert, D. P., Unexpected Direct Synthesis of N-Vinyl Amides through Vinyl Azide-Enolate [3+2] Cycloaddition. *Angew Chem Int Ed Engl* **2017**, *56* (26), 7420-7424.