Supporting Information

Synthesis of Potent Antifungal 3,4-Dichloroisothiazole-Based Strobilurins with Both Direct Fungicidal Activity and Systemic Acquired Resistance

Dongyan Yang,^{abc} Xin Qi,^{bc} Xinhua Zhou,^a Zhengming Li,^{bc} Hongjun Zhou,^{*a} and Zhijin Fan^{*bc}

^a Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Road, Haizhu District, Guangzhou, Guangdong 510225, PR China.

^b State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China

^c Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China

* Address correspondence to these authors at Innovative Institute for Plant Health, School of Chemistry and

Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR

China (E-mail: hongjunzhou@163.com for Hongjun Zhou)

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin

Road, Nankai District, Tianjin 300071, P. R. China(telephone +86-13920714666; Fax:+86 022-23503620; e-mail:

fanzj@nankai.edu.cn for Zhijin Fan).

Table of Contents

¹ H NMR spectra of intermediates 6b-6d	. S3
¹ H NMR, ¹³ C NMR and HRMS spectra of target compounds	S5
Single crystal X-Ray data for compound 1e and 2e	S53

¹H NMR spectra of intermediates6b-6d

Data for methyl 3,4-dichloro-N-methoxyisothiazole-5-carboxamide (**6b**). Yield 70%; white solid; mp125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 3.93 (s, 3H).

Data for methyl 3,4-dichloro-N-(cyclopropylmethoxy)isothiazole-5-carboxamide (**6c**). Yield 59%; white solid; mp88-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.87 – 3.66 (m, 2H), 1.28 (d, *J* = 18.5 Hz, 1H), 1.13 (s, 1H), 0.56 (s, 2H), 0.26 (s, 2H).

Figure S2. The ¹H NMR (400 MHz, CDCl₃) of **6c**

Figure S3. The ¹H NMR (400 MHz, CDCl₃) of 6d

¹H NMR, ¹³C NMR and HRMS spectra of target compounds

Data for methyl (E)-2-(2-(((3,4-dichloroisothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**6a**). Yield 64%; white solid; mp108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.53 – 7.31 (m, 3H), 7.20 (dd, *J* = 7.3, 1.6 Hz, 1H), 4.99 (s, 2H), 4.05 (s, 3H), 3.90 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.52, 155.27, 154.45, 149.36, 149.13, 132.89, 131.29, 130.68, 129.62, 129.37, 128.45, 123.40, 76.95, 63.99, 53.37. HRMS (ESI) m/z calcd for C₁₅H₁₄Cl₂N₃O₅S (M+ H)⁺418.0026, found 418.0027.

Figure S4. The ¹H NMR (400 MHz, CDCl₃) of **6a**

Figure S6. The HRMS spectra of 6a

Data for methyl (E)-2-(2-(((3,4-dichloro-N-methylisothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**1a**). Yield 62%; white solid; mp79-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.36 (m, 3H), 7.26 – 7.22 (m, 1H), 4.76 (s, 2H), 4.04 (s, 3H), 3.88 (s, 3H), 3.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.08, 158.85, 149.28, 148.83, 147.82, 131.43, 130.90, 130.00, 129.77, 129.38, 128.92, 126.79,76.01, 64.05, 53.27, 34.33. HRMS (ESI) m/z calcd for C₁₆H₁₆Cl₂N₃O₅S (M+ H)⁺432.0182, found 432.0186.

Figure S7. The ¹H NMR (400 MHz, CDCl₃) of **1a**

Figure S9. The HRMS spectra of 1a

Data for methyl (E)-2-(2-(((N-allyl-3,4-dichloroisothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**1b**). Yield 54%; white crystal; mp107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.39 (m, 3H), 7.25 (dd, J = 6.2, 2.5 Hz, 1H), 5.89 (ddt, J = 16.4, 10.2, 5.9 Hz, 1H), 5.39 – 5.22 (m, 2H), 4.80 (s, 2H), 4.32 (dt, J = 5.9, 1.4 Hz, 2H), 4.05 (s, 3H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.03, 158.81, 149.31, 148.70, 147.89, 131.51, 130.72, 130.58, 129.86, 129.75, 129.26, 128.84, 126.92, 119.39, 76.31, 64.05, 53.26, 50.06. HRMS (ESI) m/z calcd for C₁₈H₁₈Cl₂N₃O₅S (M+ H)⁺458.0339, found 458.0340.

Figure S10. The ¹H NMR (400 MHz, CDCl₃) of **1b**

Data for methyl (E)-2-(2-(((3,4-dichloro-N-(prop-2-yn-1-yl)isothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**1c**). Yield 70%; white solid; mp140-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.53 – 7.31 (m, 3H), 7.20 (dd, *J* = 7.3, 1.6 Hz, 1H), 4.99 (s, 2H), 4.05 (s, 3H), 3.90 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.52, 155.27, 154.45, 149.36, 149.13, 132.89, 131.29, 130.68, 129.62, 129.37, 128.45, 123.40, 76.95, 63.99, 53.37. HRMS (ESI) m/z calcd for C₁₈H₁₆Cl₂N₃O₅S (M+ H)⁺456.0182, found 456.0182.

Figure S13. The ¹H NMR (400 MHz, CDCl₃) of **1c**

Figure S15. The HRMS spectra of 1c

Data for methyl (E)-2-(2-(((N-(but-2-yn-1-yl)-3,4-dichloroisothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**1d**). Yield 44%; white solid; mp91-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.40 (m, 3H), 7.26 – 7.18 (m, 1H), 4.91 (s, 2H), 4.38 (s, 2H), 4.04 (s, 3H), 3.88 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.03, 159.17, 149.26, 148.70, 147.50, 131.47, 130.66, 129.96, 129.75, 129.26, 128.80, 127.20, 80.83, 76.79, 72.07, 64.02, 53.26, 38.10, 3.66. HRMS (ESI) m/z calcd for C₁₉H₁₈Cl₂N₃O₅S (M+ H)⁺470.0339, found 470.0343.

Figure S18. The HRMS spectra of 1d

Data for methyl (E)-2-(2-(((3,4-dichloro-N-(cyclopropylmethyl)isothiazole-5-carboxamido)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**1e**). Yield 16%; white crystal; mp77-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (tq, *J* = 5.4, 3.1 Hz, 3H), 7.23 (dt, *J* = 5.8, 2.6 Hz, 1H), 4.77 (s, 2H), 4.02 (s, 3H), 3.87 (s, 3H), 3.58 (d, *J* = 7.1 Hz, 2H), 1.30 – 1.13 (m, 1H), 0.64 – 0.49 (m, 2H), 0.43 – 0.27 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.04, 159.03, 149.15, 148.70, 148.48, 131.66, 130.37, 129.78, 129.59, 129.15, 128.84, 126.49, 76.00, 64.04, 53.28, 51.99, 9.33, 4.02. HRMS (ESI) m/z calcd for C₁₉H₂₀Cl₂N₃O₅S (M+ H)⁺472.0495, found 472.0493.

Figure S19. The ¹H NMR (400 MHz, CDCl₃) of **1e**

Data for methyl (E)-2-(2-(((((Z)-(3,4-dichloroisothiazol-5-yl)(methoxy)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**2a**). Yield 21%; white solid; mp136-137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 1H), 7.46 – 7.36 (m, 2H), 7.23 – 7.16 (m, 1H), 5.00 (s, 2H), 4.05 (s, 6H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 151.67, 149.38, 149.35, 147.20, 134.86, 130.23, 129.41, 129.30, 128.55, 128.24, 120.85, 75.98, 63.81, 60.74, 52.95. HRMS (ESI) m/z calcd for C₁₆H₁₆Cl₂N₃O₅S (M+ H)⁺432.0182, found 432.0181.

Figure S22. The ¹H NMR (400 MHz, CDCl₃) of **2a**

Figure S24. The HRMS spectra of 2a

Data for methyl methyl (E)-2-(2-((((((Z)-(allyloxy)(3,4-dichloroisothiazol-5yl)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**2b**). Yield 31%; white crystal; mp65-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.48 (m, 1H), 7.47 – 7.39 (m, 2H), 7.24 – 7.16 (m, 1H), 5.96 (ddt, *J* = 16.5, 10.3, 6.1 Hz, 1H), 5.44 – 5.16 (m, 2H), 5.00 (s, 2H), 4.82 (dt, *J* = 6.0, 1.2 Hz, 2H), 4.05 (s, 3H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.27, 152.16, 149.47, 149.31, 146.17, 134.77, 132.15, 130.24, 129.44, 129.41, 128.52, 128.31, 120.62, 119.79, 75.99, 73.90, 63.89, 53.07. HRMS (ESI) m/z calcd for C₁₈H₁₈Cl₂N₃O₅S (M+ H)⁺458.0339, found 458.0332.

Data for methyl (E)-2-(2-((((((Z)-(3,4-dichloroisothiazol-5-yl)(prop-2-yn-1yloxy)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**2c**). Yield 56%; white powder; mp70-71 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 5.9 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.22 – 7.16 (m, 1H), 5.03 (s, 2H), 4.98 (s, 2H), 4.04 (s, 3H), 3.84 (s, 3H), 2.58 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.28, 151.70, 149.52, 149.27, 145.33, 134.43, 130.34, 129.54, 129.48, 128.53, 128.44, 120.88, 77.28, 77.13,76.29, 63.91, 60.50, 53.11. HRMS (ESI) m/z calcd for C₁₈H₁₆Cl₂N₃O₅S (M+ H)⁺456.0182, found 456.0190.

Figure S28. The ¹H NMR (400 MHz, CDCl₃) of **2c**

Figure S30. The HRMS spectra of 2c

Data for methyl (E)-2-(2-(((((Z)-(but-2-yn-1-yloxy)(3,4-dichloroisothiazol-5yl)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**2d**). Yield 48%; white powder; mp68-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 6.5 Hz, 1H), 7.48 – 7.36 (m, 2H), 7.19 (d, *J* = 6.5 Hz, 1H), 5.02 (s, 2H), 4.92 (s, 2H), 4.04 (s, 3H), 3.84 (s, 3H), 1.81 (d, *J* = 2.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 152.15, 149.40, 149.27, 145.68, 134.67, 130.23, 129.43, 129.39, 128.47, 128.29, 120.75, 85.74, 76.07, 72.98, 63.88, 61.27, 53.06, 3.68. HRMS (ESI) m/z calcd for C₁₉H₁₈Cl₂N₃O₅S (M+ H)⁺470.0339, found 470.0344.

Figure S33. The HRMS spectra of 2d

Data for methyl (E)-2-(2-(((((Z)-(cyclopropylmethoxy)(3,4-dichloroisothiazol-5yl)methylene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (**2e**). Yield 48%; white solid; mp69-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 1H), 7.42 (tt, *J* = 7.5, 5.6 Hz, 2H), 7.22 – 7.13 (m, 1H), 5.00 (s, 2H), 4.17 (d, *J* = 7.4 Hz, 2H), 4.04 (s, 3H), 3.84 (s, 3H), 1.28 – 1.05 (m, 1H), 0.68 – 0.50 (m, 2H), 0.30 (q, *J* = 5.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.24, 152.66, 149.44, 149.31, 146.76, 134.94, 130.18, 129.41, 129.32, 128.49, 128.24, 120.40, 78.54, 75.87, 63.87, 53.05, 10.90, 3.39. HRMS (ESI) m/z calcd for C₁₉H₂₀Cl₂N₃O₅S (M+ H)⁺472.0495, found 472.0500.

Figure S34. The ¹H NMR (400 MHz, CDCl₃) of **2e**

Figure S36. The HRMS spectra of 2e

Data for methyl (E)-2-(2-((3,4-dichloro-N-methoxyisothiazole-5-carboxamido)methyl)phenyl)-2-(methoxyimino)acetate (**3a**). Yield 28%; white solid; mp113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.33 (m, 3H), 7.24 – 7.11 (m, 1H), 4.83 (s, 2H), 4.07 (s, 3H), 3.88 (s, 3H), 3.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.27, 158.07, 149.58, 149.10, 146.94, 133.06, 130.24, 129.86, 129.46, 128.65, 128.24, 127.67,64.01, 63.37, 53.17, 47.61. HRMS (ESI) m/z calcd for C₁₆H₁₆Cl₂N₃O₅S (M+ H)⁺432.0182, found 432.0181.

Figure S37. The ¹H NMR (400 MHz, CDCl₃) of **3a**

Figure S39. The HRMS spectra of 3a

Data for methyl (E)-2-(2-((3,4-dichloro-N-(cyclopropylmethoxy)isothiazole-5-carboxamido)methyl)phenyl)-2-(methoxyimino)acetate (**3b**). Yield 17%; white solid; mp114-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.33 (m, 3H), 7.20 – 7.07 (m, 1H), 4.84 (s, 2H), 4.06 (s, 3H), 3.87 (s, 3H), 3.59 (d, *J* = 7.3 Hz, 2H), 1.00 (tt, *J* = 7.7, 4.8 Hz, 1H), 0.65 – 0.47 (m, 2H), 0.16 (dt, *J* = 6.2, 4.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 186.12, 163.26, 158.35, 149.35, 149.06, 147.71, 133.26, 129.98, 129.73, 129.21, 128.62, 128.05, 81.15, 63.95, 53.10, 48.53, 8.68, 3.86. HRMS (ESI) m/z calcd for C₁₉H₂₀Cl₂N₃O₅S (M+ H)⁺472.0495, found 472.0497.

Figure S40. The ¹H NMR (400 MHz, CDCl₃) of **3b**

Data for methyl (E)-2-(2-(((Z)-(3,4-dichloroisothiazol-5-yl)(methoxyimino)methoxy)methyl)phenyl)-2-(methoxyimino)acetate (**4a**). Yield 42%; white solid; mp103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.6, 1.6 Hz, 1H), 7.44 (dtd, J = 18.0, 7.5, 1.5 Hz, 2H), 7.19 (dd, J = 7.5, 1.6 Hz, 1H), 5.24 (s, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.13, 151.78, 149.34, 148.72, 145.71, 134.13, 129.76, 129.34, 128.61, 128.48, 120.68, 72.22, 72.20, 63.89, 63.37, 53.11. HRMS (ESI) m/z calcd for C₁₆H₁₆Cl₂N₃O₅S (M+ H)⁺432.0182, found 432.0182.

Figure S43. The ¹H NMR (400 MHz, CDCl₃) of 4a

Figure S45. The HRMS spectra of **4a** 32

Data for methyl (E)-2-(2-(((Z)-(3,4-dichloroisothiazol-5-yl)(methoxyimino)methoxy)methyl)phenyl)-3methoxyacrylate (**4b**). Yield 55%; white solid; mp100-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.55 – 7.50 (m, 1H), 7.40 – 7.30 (m, 2H), 7.20 – 7.12 (m, 1H), 5.27 (s, 2H), 3.94 (s, 3H), 3.78 (s, 3H), 3.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.64, 160.35, 152.03, 149.13, 146.10, 134.92, 131.49, 131.20, 128.27, 128.22, 128.12, 120.61, 109.61, 72.27, 63.30, 62.01, 51.71. HRMS (ESI) m/z calcd for C₁₇H₁₇Cl₂N₂O₅S (M+ H)⁺431.0230, found 431.0235.

Figure S46. The ¹H NMR (400 MHz, CDCl₃) of **4b**

Figure S48. The HRMS spectra of 4b

Data for methyl (E)-2-(2-(((Z)-((cyclopropylmethoxy)imino)(3,4-dichloroisothiazol-5-yl)methoxy)methyl)phenyl)-2-(methoxyimino)acetate (**4c**). Yield 61%; white solid; mp99-100 °C. ¹H NMR (400 MHz, CDCl₃) 7.68 – 7.55 (m, 1H), 7.44 (dtd, J = 20.4, 7.5, 1.4 Hz, 2H), 7.19 (dd, J = 7.5, 1.5 Hz, 1H), 5.31 (s, 2H), 4.02 (s, 3H), 3.95 (d, J = 7.2Hz, 2H), 3.84 (s, 3H), 1.30 – 1.12 (m, 1H), 0.66 – 0.49 (m, 2H), 0.34 (dt, J = 6.1, 4.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.13, 152.27, 149.35, 148.78, 145.63, 134.32, 129.68, 129.36, 128.53, 128.50, 128.36, 120.32, 80.50, 72.20, 63.83, 53.02, 10.14, 3.17. HRMS (ESI) m/z calcd for C₁₉H₂₀Cl₂N₃O₅S (M+ H)⁺472.0495, found 472.0503.

Figure S51. The HRMS spectra of 4c

Data for methyl (E)-2-(2-(((Z)-((cyclopropylmethoxy)imino)(3,4-dichloroisothiazol-5-yl)methoxy)methyl)phenyl)-3-methoxyacrylate (**4d**). Yield 53%; white solid; mp78-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 6.8 Hz, 1H), 7.58 (s, 1H), 7.36 (tt, *J* = 9.2, 4.6 Hz, 2H), 7.17 (d, *J* = 7.0 Hz, 1H), 5.35 (s, 2H), 3.96 (d, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.68 (s, 3H), 1.35 – 1.11 (m, 1H), 0.61 (d, *J* = 7.7 Hz, 2H), 0.35 (d, *J* = 5.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.64, 160.37, 152.56, 149.15, 145.99, 135.13, 131.50, 131.15, 131.02, 128.33, 128.21, 128.09, 120.22, 109.65, 80.40, 72.26, 62.00, 51.69, 10.19, 3.21. HRMS (ESI) m/z calcd for C₂₀H₂₁Cl₂N₂O₅S (M+ H)⁺471.0543, found 471.0549.

Figure S53. The ¹³C NMR (400 MHz, CDCl₃) of 4d

Figure S54. The HRMS spectra of **4d** 38

Data for methyl (E)-2-(2-(((E)-(3,4-dichloroisothiazol-5-yl)((prop-2-yn-1-yloxy)imino)methoxy)methyl)phenyl)-2-(methoxyimino)acetate (**4e**). Yield 28%; white solid; mp77-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.5 Hz, 1H), 7.45 (dddd, *J* = 16.1, 8.7, 6.8, 3.7 Hz, 2H), 7.24 – 7.15 (m, 1H), 5.29 (s, 2H), 4.75 – 4.66 (m, 2H), 4.03 (s, 3H), 3.85 (s, 3H), 2.54 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.13, 151.36, 149.41, 148.66, 146.86, 133.98, 129.77, 129.38, 128.62, 128.54, 121.24, 78.61, 75.55, 72.69, 63.92, 62.99, 53.14. HRMS (ESI) m/z calcd for C₁₈H₁₆Cl₂N₃O₅S (M+ H)⁺456.0182, found 456.0188.

Figure S55. The ¹H NMR (400 MHz, CDCl₃) of 4e

Figure S57. The HRMS spectra of 4e

Data for methyl (E)-2-(2-(((E)-(3,4-dichloroisothiazol-5-yl)((prop-2-yn-1-yloxy)imino)methoxy)methyl)phenyl)-3methoxyacrylate (**4f**). Yield 27%; white solid; mp120-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.56 – 7.51 (m, 1H), 7.42 – 7.30 (m, 2H), 7.17 (dd, J = 6.4, 2.6 Hz, 1H), 5.32 (s, 2H), 4.71 (d, J = 1.9 Hz, 2H), 3.80 (s, 3H), 3.68 (s, 3H), 2.54 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.63, 160.38, 151.65, 149.22, 147.22, 134.77, 131.53, 131.20, 128.33, 128.29, 128.12, 121.15, 109.57, 78.75, 75.40, 72.73, 62.92, 62.04, 51.73. HRMS (ESI) m/z calcd for C₁₉H₁₇Cl₂N₂O₅S (M+ H)⁺455.0230, found 455.0219.

Figure S58. The ¹H NMR (400 MHz, CDCl₃) of 4f

Figure S60. The HRMS spectra of 4f

Data for methyl (Z)-3,4-dichloro-N-((2-((E)-1-(methoxyimino)-2-(methylamino)-2oxoethyl)benzyl)oxy)isothiazole-5-carbimidate (**7a**). Yield 76%; white solid; mp93-94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.48 (m, 1H), 7.44 (qd, *J* = 7.6, 3.8 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.83 (d, *J* = 5.7 Hz, 1H), 5.04 (s, 2H), 4.06 (s, 3H), 3.98 (s, 3H), 2.92 (d, *J* = 5.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.79, 151.80, 150.92, 149.39, 147.13, 134.92, 129.85, 129.37, 129.26, 128.86, 128.16, 120.77, 76.24, 63.33, 60.84, 26.23. HRMS (ESI) m/z calcd for C₁₆H₁₇Cl₂N₄O₄S (M+ H)⁺431.0342, found 431.0349.

Figure S61. The ¹H NMR (400 MHz, CDCl₃) of 7a

Figure S63. The HRMS spectra of 7a 44

Data for 2-((E)-1-(methoxyimino)-2-(methylamino)-2-oxoethyl)benzyl (E)-3,4-dichloro-N-methoxyisothiazole-5carbimidate (**7b**). Yield 68%; white solid; mp90-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.3, 1.6 Hz, 1H), 7.42 (dtd, *J* = 15.1, 7.4, 1.6 Hz, 2H), 7.23 – 7.18 (m, 1H), 6.79 (d, *J* = 5.7 Hz, 1H), 5.25 (s, 2H), 3.92 (s, 6H), 2.91 (d, *J* = 5.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.62, 151.83, 150.33, 149.22, 145.79, 134.33, 129.61, 129.05, 128.93, 128.36, 128.29, 120.65, 72.58, 63.33, 63.31, 26.28. HRMS (ESI) m/z calcd for C₁₆H₁₇Cl₂N₄O₄S (M+ H)⁺431.0342, found 431.0345.

Figure S64. The ¹H NMR (400 MHz, CDCl₃) of **7b**

Figure S66. The HRMS spectra of 7b

Data for 2-((E)-2-(cyclopropylamino)-1-(methoxyimino)-2-oxoethyl)benzyl (E)-3,4-dichloro-Nmethoxyisothiazole-5-carbimidate (7c). Yield 59%; white solid; mp103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.4, 1.6 Hz, 1H), 7.41 (dtd, J = 16.1, 7.4, 1.6 Hz, 2H), 7.20 (dd, J = 7.2, 1.7 Hz, 1H), 6.91 – 6.83 (m, 1H), 5.25 (s, 2H), 3.92 (s, 3H), 3.91 (s, 3H), 2.78 (tq, J = 7.3, 3.7 Hz, 1H), 0.82 (td, J = 7.1, 5.3 Hz, 2H), 0.66 – 0.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.25, 151.85, 150.26, 149.23, 145.79, 134.37, 129.59, 129.19, 128.76, 128.34, 128.22, 120.64,72.68, 63.32, 63.31, 22.63, 6.64. HRMS (ESI) m/z calcd for C₁₈H₁₉Cl₂N₄O₄S (M+ H)⁺457.0499, found 457.0506.

Figure S67. The ¹H NMR (400 MHz, CDCl₃) of 7c

Figure S69. The HRMS spectra of 7c

Data for (E)-3,4-dichloro-N-((2-(1-(methoxyimino)-2-(methylamino)-2-oxoethyl)benzyl)oxy)isothiazole-5carboxamide (7d). Yield 57%; white solid; mp154-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.42 (dtd, J = 21.8, 7.4, 1.5 Hz, 2H), 7.33 (dd, J = 7.5, 1.4 Hz, 1H), 7.16 (dd, J = 7.4, 1.5 Hz, 1H), 6.99 (d, J = 5.8 Hz, 1H), 5.00 (s, 2H), 3.96 (s, 3H), 2.92 (d, J = 5.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.33, 155.12, 154.31, 151.38, 149.18, 133.43, 131.30, 130.73, 129.37, 129.22, 128.24, 120.24, 76.76, 63.55, 26.37. HRMS (ESI) m/z calcd for C₁₅H₁₅Cl₂N₄O₄S (M+ H)⁺417.0186, found 417.0191.

Figure S72. The HRMS spectra of 7d

Data for (E)-3,4-dichloro-N-((2-(2-(cyclopropylamino)-1-(methoxyimino)-2-oxoethyl)benzyl)oxy)isothiazole-5carboxamide (**7e**). Yield 61%; white solid; mp122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.45 (dtd, *J* = 23.1, 7.5, 1.4 Hz, 2H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.18 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.11 – 6.95 (m, 1H), 5.01 (s, 2H), 3.98 (s, 3H), 2.80 (tq, *J* = 7.3, 3.7 Hz, 1H), 0.92 – 0.76 (m, 2H), 0.66 (q, *J* = 3.9, 3.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.00, 155.22, 154.35, 151.32, 149.19, 133.32, 131.22, 130.75, 129.36, 129.24, 128.37, 120.30, 76.76, 63.56, 22.74, 6.68. HRMS (ESI) m/z calcd for C₁₇H₁₇Cl₂N₄O₄S (M+ H)⁺443.0342, found 443.0351.

Figure S73. The ¹H NMR (400 MHz, CDCl₃) of 7e

Figure S74. The ¹³C NMR (400 MHz, CDCl₃) of 7e

Figure S75. The HRMS spectra of 7e

Single crystal X-Ray data for compound 1e and 2e

Table S1. Crystal data and structure refinement for 1e.

ITEMS DATAS	
Identification code	1e
Empirical formula	$C_{19}H_{19}Cl_2N_3O_5S$
Formula weight	472.33
Temperature/K	113 (2)
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a=8.6714(17)A alpha=85.84(3) deg.
	b=10.866(2)A beta =79.04(3)deg.
	c=11.901(2)A gamma=71.60(3) deg.
Volume	1044.6(4)A^3
Z, Calculated density	2, 1.502 Mg/m^3
Absorption coefficient	0.448 mm^-1
F(000)	488
Crystal size	0.200 x 0.180 x 0.120 mm
Theta range for data collection	1.743 to 25.019 deg.
Limiting indices	-10<=h<=10,-12<=k<=12,-14<=l<=14
Reflections collected / unique	9891 / 3664 [R(int) = 0.0656]
Completeness to theta $= 25.019$	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.7273
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3664 / 0 / 273
Goodness-of-fit on F^2	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 = 0.1332
R indices (all data)	R1 = 0.0684, wR2 = 0.1399
Extinction coefficient	n/a
Largest diff. peak and hole	1.068 and -0.460 e.A^-3

Table S2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic

displacement parameters ($A^2 \times 10^3$) for **1e**.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
S(1)	5316(1)	1257(1)	720(1)	57(1)
Cl(1)	4552(1)	6133(1)	6477(1)	38(1)
Cl(2)	1459(1)	5700(1)	5526(1)	54(1)
O(1)	6285(3)	8145(2)	5643(2)	45(1)
O(2)	6358(2)	8610(2)	2712(2)	24(1)
O(3)	2551(2)	7273(2)	1059(2)	30(1)
O(4)	3393(2)	5232(2)	1746(2)	27(1)
O(5)	8066(2)	4979(2)	728(2)	24(1)
N(1)	2240(3)	7257(3)	3888(2)	35(1)
N(2)	6954(3)	8441(2)	3752(2)	29(1)
N(3)	6415(3)	5049(2)	1083(2)	20(1)
C(1)	2598(4)	6663(3)	4831(3)	32(1)
C(2)	3955(3)	6828(3)	5241(2)	27(1)
C(3)	4643(3)	7616(3)	4499(2)	24(1)
C(4)	6015(3)	8098(3)	4686(3)	29(1)
C(5)	8170(4)	9078(4)	3849(3)	47(1)
C(6)	8069(5)	10254(4)	3179(3)	50(1)
C(7)	9123(5)	10313(4)	2045(3)	60(1)
C(8)	9482(4)	10818(3)	3076(3)	40(1)
C(9)	7337(3)	7553(3)	1928(2)	24(1)
C(10)	6826(3)	7915(3)	789(2)	21(1)
C(11)	7278(3)	8919(3)	159(2)	25(1)
C(12)	6879(3)	9274(3)	-910(3)	31(1)
C(13)	6004(4)	8640(3)	-1382(3)	31(1)
C(14)	5511(4)	7653(3)	-762(2)	26(1)
C(15)	5924(3)	7282(3)	309(2)	20(1)
C(16)	5446(3)	6165(3)	892(2)	21(1)
C(17)	3618(3)	6307(3)	1231(2)	22(1)
C(18)	1685(3)	5260(3)	2138(3)	34(1)
C(19)	9078(3)	3699(3)	987(3)	28(1)

Bond	lengths [A] and angles [deg]	Bond	Lengths [A] and angles [deg]
S(1)-N(1)	1.644(3)	O(1)-C(4)-N(2)	121.8(3)
S(1)-C(3)	1.707(3)	O(1)-C(4)-C(3)	120.7(3)
Cl(1)-C(2)	1.698(3)	N(2)-C(4)-C(3)	117.5(3)
Cl(2)-C(1)	1.723(3)	C(6)-C(5)-N(2)	115.8(3)
O(1)-C(4)	1.213(3)	C(6)-C(5)-H(5A)	108.3
O(2)-N(2)	1.407(3)	N(2)-C(5)-H(5A)	108.3
O(2)-C(9)	1.467(3)	C(6)-C(5)-H(5B)	108.3
O(3)-C(17)	1.195(3)	N(2)-C(5)-H(5B)	108.3
O(4)-C(17)	1.332(3)	H(5A)-C(5)-H(5B)	107.4
O(4)-C(18)	1.457(3)	C(5)-C(6)-C(7)	123.9(4)
O(5)-N(3)	1.393(3)	C(5)-C(6)-C(8)	117.8(3)
O(5)-C(19)	1.438(3)	C(7)-C(6)-C(8)	60.0(2)
N(1)-C(1)	1.293(4)	C(5)-C(6)-H(6)	114.7
N(2)-C(4)	1.351(4)	C(7)-C(6)-H(6)	114.7
N(2)-C(5)	1.457(4)	C(8)-C(6)-H(6)	114.7
N(3)-C(16)	1.272(3)	C(6)-C(7)-C(8)	60.9(2)
C(1)-C(2)	1.422(4)	C(6)-C(7)-H(7A)	117.7
C(2)-C(3)	1.372(4)	C(8)-C(7)-H(7A)	117.7
C(3)-C(4)	1.501(4)	C(6)-C(7)-H(7B)	117.7
C(5)-C(6)	1.444(5)	C(8)-C(7)-H(7B)	117.7
C(5)-H(5A)	0.9900	H(7A)-C(7)-H(7B)	114.8
C(5)-H(5B)	0.9900	C(7)-C(8)-C(6)	59.1(2)
C(6)-C(7)	1.489(5)	C(7)-C(8)-H(8A)	117.9
C(6)-C(8)	1.516(5)	C(6)-C(8)-H(8A)	117.9
C(6)-H(6)	1.0000	C(7)-C(8)-H(8B)	117.9
C(7)-C(8)	1.502(5)	C(6)-C(8)-H(8B)	117.9
C(7)-H(7A)	0.9900	H(8A)-C(8)-H(8B)	115.0
C(7)-H(7B)	0.9900	O(2)-C(9)-C(10)	107.3(2)
C(8)-H(8A)	0.9900	O(2)-C(9)-H(9A)	110.3
C(8)-H(8B)	0.9900	C(10)-C(9)-H(9A)	110.3
C(9)-C(10)	1.492(4)	O(2)-C(9)-H(9B)	110.3
C(9)-H(9A)	0.9900	C(10)-C(9)-H(9B)	110.3
C(9)-H(9B)	0.9900	H(9A)-C(9)-H(9B)	108.5
C(10)-C(11)	1.395(4)	C(11)-C(10)-C(15)	118.0(3)
C(10)-C(15)	1.407(4)	C(11)-C(10)-C(9)	118.8(2)

Table S3. Bond lengths [A] and angles [deg] for 1e

C(11)-C(12)	1.377(4)	C(15)-C(10)-C(9)	123.2(2)
C(11)-H(11)	0.9500	C(12)-C(11)-C(10)	121.4(3)
C(12)-C(13)	1.384(4)	C(12)-C(11)-H(11)	119.3
C(12)-H(12)	0.9500	C(10)-C(11)-H(11)	119.3
C(13)-C(14)	1.390(4)	C(11)-C(12)-C(13)	120.4(3)
C(13)-H(13)	0.9500	C(11)-C(12)-H(12)	119.8
C(14)-C(15)	1.386(4)	C(13)-C(12)-H(12)	119.8
C(14)-H(14)	0.9500	C(12)-C(13)-C(14)	119.4(3)
C(15)-C(16)	1.488(4)	C(12)-C(13)-H(13)	120.3
C(16)-C(17)	1.520(4)	C(14)-C(13)-H(13)	120.3
C(18)-H(18A)	0.9800	C(15)-C(14)-C(13)	120.5(3)
C(18)-H(18B)	0.9800	C(15)-C(14)-H(14)	119.7
C(18)-H(18C)	0.9800	C(13)-C(14)-H(14)	119.7
C(19)-H(19A)	0.9800	C(14)-C(15)-C(10)	120.3(3)
C(19)-H(19B)	0.9800	C(14)-C(15)-C(16)	117.6(3)
C(19)-H(19C)	0.9800	C(10)-C(15)-C(16)	122.0(2)
N(1)-S(1)-C(3)	95.46(14)	N(3)-C(16)-C(15)	126.7(2)
N(2)-O(2)-C(9)	110.59(19)	N(3)-C(16)-C(17)	115.0(2)
C(17)-O(4)-C(18)	116.1(2)	C(15)-C(16)-C(17)	118.2(2)
N(3)-O(5)-C(19)	108.53(18)	O(3)-C(17)-O(4)	125.8(3)
C(1)-N(1)-S(1)	109.2(2)	O(3)-C(17)-C(16)	123.2(3)
C(4)-N(2)-O(2)	117.6(2)	O(4)-C(17)-C(16)	111.0(2)
C(4)-N(2)-C(5)	121.6(3)	O(4)-C(18)-H(18A)	109.5
O(2)-N(2)-C(5)	117.0(2)	O(4)-C(18)-H(18B)	109.5
C(16)-N(3)-O(5)	111.9(2)	H(18A)-C(18)-H(18B)	109.5
N(1)-C(1)-C(2)	117.4(3)	O(4)-C(18)-H(18C)	109.5
N(1)-C(1)-Cl(2)	119.9(2)	H(18A)-C(18)-H(18C)	109.5
C(2)-C(1)-Cl(2)	122.7(2)	H(18B)-C(18)-H(18C)	109.5
C(3)-C(2)-C(1)	109.6(3)	O(5)-C(19)-H(19A)	109.5
C(3)-C(2)-Cl(1)	127.6(2)	O(5)-C(19)-H(19B)	109.5
C(1)-C(2)-Cl(1)	122.8(2)	H(19A)-C(19)-H(19B)	109.5
C(2)-C(3)-C(4)	125.2(3)	O(5)-C(19)-H(19C)	109.5
C(2)-C(3)-S(1)	108.4(2)	H(19A)-C(19)-H(19C)	109.5
C(4)-C(3)-S(1)	126.2(2)	H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (A 2 x 10 3) for 1e.

The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
S(1)	28(1)	43(1)	25(1)	4(1)	-8(1)	-15(1)
Cl(1)	50(1)	40(1)	25(1)	9(1)	-6(1)	-17(1)
Cl(2)	57(1)	73(1)	44(1)	-7(1)	10(1)	-49(1)
O(1)	46(1)	83(2)	20(1)	1(1)	-9(1)	-38(1)
O(2)	27(1)	28(1)	18(1)	3(1)	-5(1)	-10(1)
O(3)	22(1)	28(1)	36(1)	0(1)	-7(1)	-3(1)
O(4)	18(1)	29(1)	35(1)	4(1)	-1(1)	-10(1)
O(5)	16(1)	21(1)	31(1)	6(1)	1(1)	-6(1)
N(1)	26(1)	54(2)	32(2)	-4(1)	0(1)	-22(1)
N(2)	36(2)	40(2)	20(1)	6(1)	-11(1)	-24(1)
N(3)	13(1)	23(1)	22(1)	1(1)	-1(1)	-4(1)
C(1)	30(2)	42(2)	28(2)	-7(1)	6(1)	-21(2)
C(2)	27(2)	30(2)	21(2)	-3(1)	-2(1)	-7(1)
C(3)	23(2)	31(2)	19(2)	-1(1)	-3(1)	-10(1)
C(4)	27(2)	37(2)	23(2)	0(1)	-3(1)	-12(2)
C(5)	52(2)	63(3)	45(2)	10(2)	-18(2)	-41(2)
C(6)	50(2)	52(2)	61(3)	-6(2)	-10(2)	-32(2)
C(7)	69(3)	72(3)	56(3)	-7(2)	3(2)	-53(2)
C(8)	35(2)	32(2)	60(2)	-7(2)	-2(2)	-21(2)
C(9)	21(2)	24(2)	24(2)	-2(1)	0(1)	-6(1)
C(10)	16(1)	19(2)	24(2)	0(1)	2(1)	-3(1)
C(11)	20(2)	24(2)	29(2)	2(1)	2(1)	-8(1)
C(12)	29(2)	28(2)	30(2)	7(1)	6(1)	-8(2)
C(13)	35(2)	28(2)	22(2)	6(1)	-3(1)	-2(2)
C(14)	29(2)	24(2)	22(2)	0(1)	-4(1)	-2(1)
C(15)	19(1)	18(2)	19(2)	1(1)	1(1)	-1(1)
C(16)	21(2)	23(2)	20(2)	-1(1)	-2(1)	-8(1)
C(17)	22(2)	23(2)	21(2)	-5(1)	-4(1)	-7(1)
C(18)	21(2)	46(2)	38(2)	-3(2)	2(1)	-20(2)
C(19)	22(2)	24(2)	35(2)	5(1)	-6(1)	-4(1)

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	Х	У	Z	U(eq)
H(5A)	8053	9283	4664	56
H(5B)	9285	8456	3619	56
H(6)	6947	10910	3282	60
H(7A)	8634	10955	1475	72
H(7B)	9902	9488	1718	72
H(8A)	9206	11768	3144	49
H(8B)	10475	10299	3387	49
H(9A)	7129	6731	2212	28
H(9B)	8529	7436	1865	28
H(11)	7874	9367	473	30
H(12)	7206	9958	-1324	38
H(13)	5742	8878	-2123	37
H(14)	4887	7229	-1075	31
H(18Å)	1134	5964	2686	51
H(18B)	1660	4431	2511	51
H(18C)	1113	5406	1483	51
H(19A)	8989	3583	1819	42
H(19B)	10231	3591	639	42
H(19C)	8703	3052	681	42

Table S5. Hydrogen coordinates ($x\;10^{\wedge}4)$ and isotropic displacement parameters (A^2 x 10^3) for 1e.

Table S6. Torsion angles [deg] for 1e.

	Torsion angles [deg]		Torsion angles [deg]
C(3)-S(1)-N(1)-C(1)	-1.3(3)	C(5)-C(6)-C(7)-C(8)	-105.0(4)
C(9)-O(2)-N(2)-C(4)	-108.7(3)	C(5)-C(6)-C(8)-C(7)	115.1(4)
C(9)-O(2)-N(2)-C(5)	92.9(3)	N(2)-O(2)-C(9)-C(10)	-170.5(2)
C(19)-O(5)-N(3)-C(16)	179.2(2)	O(2)-C(9)-C(10)-C(11)	70.8(3)
S(1)-N(1)-C(1)-C(2)	1.4(4)	O(2)-C(9)-C(10)-C(15)	-110.0(3)
S(1)-N(1)-C(1)-Cl(2)	-177.79(17)	C(15)-C(10)-C(11)-C(12)	-0.9(4)
N(1)-C(1)-C(2)-C(3)	-0.7(4)	C(9)-C(10)-C(11)-C(12)	178.3(3)
Cl(2)-C(1)-C(2)-C(3)	178.5(2)	C(10)-C(11)-C(12)-C(13)	0.3(4)
N(1)-C(1)-C(2)-Cl(1)	178.9(2)	C(11)-C(12)-C(13)-C(14)	0.9(4)
Cl(2)-C(1)-C(2)-Cl(1)	-2.0(4)	C(12)-C(13)-C(14)-C(15)	-1.5(4)
C(1)-C(2)-C(3)-C(4)	175.0(3)	C(13)-C(14)-C(15)-C(10)	1.0(4)
Cl(1)-C(2)-C(3)-C(4)	-4.5(5)	C(13)-C(14)-C(15)-C(16)	-176.3(3)
C(1)-C(2)-C(3)-S(1)	-0.3(3)	C(11)-C(10)-C(15)-C(14)	0.2(4)
Cl(1)-C(2)-C(3)-S(1)	-179.85(18)	C(9)-C(10)-C(15)-C(14)	-178.9(2)
N(1)-S(1)-C(3)-C(2)	0.9(2)	C(11)-C(10)-C(15)-C(16)	177.4(2)
N(1)-S(1)-C(3)-C(4)	-174.3(3)	C(9)-C(10)-C(15)-C(16)	-1.8(4)
O(2)-N(2)-C(4)-O(1)	-167.3(3)	O(5)-N(3)-C(16)-C(15)	3.0(4)
C(5)-N(2)-C(4)-O(1)	-9.9(5)	O(5)-N(3)-C(16)-C(17)	178.6(2)
O(2)-N(2)-C(4)-C(3)	14.4(4)	C(14)-C(15)-C(16)-N(3)	111.0(3)
C(5)-N(2)-C(4)-C(3)	171.8(3)	C(10)-C(15)-C(16)-N(3)	-66.2(4)
C(2)-C(3)-C(4)-O(1)	-22.2(5)	C(14)-C(15)-C(16)-C(17)	-64.5(3)
S(1)-C(3)-C(4)-O(1)	152.3(3)	C(10)-C(15)-C(16)-C(17)	118.4(3)
C(2)-C(3)-C(4)-N(2)	156.1(3)	C(18)-O(4)-C(17)-O(3)	-0.7(4)
S(1)-C(3)-C(4)-N(2)	-29.5(4)	C(18)-O(4)-C(17)-C(16)	178.5(2)
C(4)-N(2)-C(5)-C(6)	-128.7(3)	N(3)-C(16)-C(17)-O(3)	-176.5(3)
O(2)-N(2)-C(5)-C(6)	28.8(4)	C(15)-C(16)-C(17)-O(3)	-0.5(4)
N(2)-C(5)-C(6)-C(7)	-98.1(4)	N(3)-C(16)-C(17)-O(4)	4.3(3)
N(2)-C(5)-C(6)-C(8)	-169.0(3)	C(15)-C(16)-C(17)-O(4)	-179.8(2)

Symmetry transformations used to generate equivalent atoms:

ITEMS	DATAS
Identification code	2e
Empirical formula	$C_{19}H_{19} Cl_2N_3O_5S$
Formula weight	472.33
Temperature/K	113 (2)
Wavelength	0.71073 A
Crystal system, space grou	p Triclinic, P-1
Unit cell dimensions	a=7.9695(16)A alpha= 83.69(3)
	deg.
	b = 8.2413(16)A beta= 88.28(3)
	deg
	c=16.800(3)A gamma= 77.67(3)
	deg
Volume	1071.4(4) A^3
Z, Calculated density	2, 1.464 Mg/m^3
Absorption coefficient	0.437 mm^-1
F(000)	488
Crystal size	0.200 x 0.180 x 0.120 mm
Theta range for data collect	2.440 to 27.855deg.
Limiting indices	-10<=h<=10,-10<=k<=10,-
Emitting matees	20<=1<=20
Reflections collected / uni	que $11105 / 5030[R(int) = 0.0386]$
Completeness to theta $= 2$	5.242 99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmissio	n 1 and 0.8259
Refinement method	Full-matrix least-squares on F ²
Data / restraints / paramete	ers 5030 / 0 / 273
Goodness-of-fit on F ²	1.040
Final R indices [I>2sigma	[I] R1 = 0.0553, wR2 = 0.1497
R indices (all data)	R1 = 0.0765, wR2 = 0.1676
Extinction coefficient	n/a
Largest diff. peak and hole	e 0.978 and -0.586 e.A^-3

Table S7. Crystal data and structure refinement for $2e\,$

Table S8. Atomic coordinates ($x\;10^{\wedge}4)$ and equivalent isotropic

displacement parameters (A² x 10³) for **2e**.

	X	V	Z	U(ea)
S(1)	5316(1)	1257(1)	720(1)	57(1)
Cl(1)	9386(1)	2089(1)	-653(1)	63(1)
Cl(2)	7870(1)	5223(1)	410(1)	40(1)
O(1)	3560(2)	3095(2)	1897(1)	45(1)
O(2)	3631(2)	6214(2)	2198(1)	39(1)
O(3)	5723(2)	2976(2)	3637(1)	38(1)
O(4)	3013(2)	3462(2)	4106(1)	44(1)
O(5)	3485(2)	8237(2)	4292(1)	38(1)
N(1)	6892(4)	881(3)	60(2)	64(1)
N(2)	4701(2)	5543(3)	1585(1)	37(1)
N(3)	3290(2)	6590(2)	4281(1)	33(1)
C(1)	7668(4)	2147(3)	-19(2)	48(1)
C(2)	7022(3)	3487(3)	443(1)	37(1)
C(3)	5663(3)	3156(3)	908(2)	36(1)
C(4)	4563(3)	4056(3)	1495(2)	37(1)
C(5)	1710(3)	3791(4)	1962(2)	54(1)
C(6)	813(4)	2339(4)	2000(2)	62(1)
C(7)	-918(3)	2581(3)	2349(2)	44(1)
C(8)	563(4)	1509(4)	2791(2)	69(1)
C(9)	4213(3)	7682(3)	2375(2)	40(1)
C(10)	5909(3)	7230(3)	2798(1)	31(1)
C(11)	7356(3)	7703(3)	2454(2)	38(1)
C(12)	8931(3)	7272(3)	2842(2)	42(1)
C(13)	9061(3)	6369(3)	3584(2)	42(1)
C(14)	7635(3)	5854(3)	3943(2)	36(1)
C(15)	6063(3)	6281(3)	3552(1)	30(1)
C(16)	4533(3)	5700(3)	3926(1)	28(1)
C(17)	4305(3)	3943(3)	3905(1)	32(1)
C(18)	5611(4)	1259(3)	3581(2)	46(1)
C(19)	1985(3)	9139(3)	4665(2)	47(1)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Bond lengths [A] and D		Bond lengths [A] and
Bond	angles [deg]	Bond	angles [deg]
~ (1) > 7 (1)			
S(1)-N(1)	1.651(3)	N(2)-C(4)-C(3)	118.7(2)
S(1)-C(3)	1./10(3)	O(1)-C(4)-C(3)	111.6(2)
Cl(1)- $C(1)$	1.705(3)	O(1)-C(5)-C(6)	106.9(2)
Cl(2)-C(2)	1.703(2)	O(1)-C(5)-H(5A)	110.3
O(1)-C(4)	1.357(3)	C(6)-C(5)-H(5A)	110.3
O(1)-C(5)	1.468(3)	O(1)-C(5)-H(5B)	110.3
O(2)-N(2)	1.402(3)	C(6)-C(5)-H(5B)	110.3
O(2)-C(9)	1.447(3)	H(5A)-C(5)-H(5B)	108.6
O(3)-C(17)	1.333(3)	C(8)-C(6)-C(7)	60.9(2)
O(3)-C(18)	1.451(3)	C(8)-C(6)-C(5)	116.8(3)
O(4)-C(17)	1.206(3)	C(7)-C(6)-C(5)	117.3(3)
O(5)-N(3)	1.401(2)	C(8)-C(6)-H(6)	116.7
O(5)-C(19)	1.432(3)	C(7)-C(6)-H(6)	116.7
N(1)-C(1)	1.315(4)	C(5)-C(6)-H(6)	116.7
N(2)-C(4)	1.279(3)	C(6)-C(7)-C(8)	59.2(2)
N(3)-C(16)	1.275(3)	C(6)-C(7)-H(7A)	117.9
C(1)-C(2)	1.417(4)	C(8)-C(7)-H(7A)	117.9
C(2)-C(3)	1.374(4)	C(6)-C(7)-H(7B)	117.9
C(3)-C(4)	1.457(4)	C(8)-C(7)-H(7B)	117.9
C(5)-C(6)	1.514(4)	H(7A)-C(7)-H(7B)	115.0
C(5)-H(5A)	0.9900	C(6)-C(8)-C(7)	59.9(2)
C(5)-H(5B)	0.9900	C(6)-C(8)-H(8A)	117.8
C(6)-C(8)	1.455(5)	C(7)-C(8)-H(8A)	117.8
C(6)-C(7)	1.465(4)	C(6)-C(8)-H(8B)	117.8
C(6)-H(6)	1.0000	C(7)-C(8)-H(8B)	117.8
C(7)-C(8)	1.479(4)	H(8A)-C(8)-H(8B)	114.9
C(7)-H(7A)	0.9900	O(2)-C(9)-C(10)	111.71(19)
C(7)-H(7B)	0.9900	O(2)-C(9)-H(9A)	109.3
C(8)-H(8A)	0.9900	C(10)-C(9)-H(9A)	109.3
C(8)-H(8B)	0.9900	O(2)-C(9)-H(9B)	109.3
C(9)-C(10)	1.502(3)	C(10)-C(9)-H(9B)	109.3
C(9)-H(9A)	0.9900	H(9A)-C(9)-H(9B)	107.9
C(9)-H(9B)	0.9900	C(11)-C(10)-C(15)	118.5(2)
C(10)-C(11)	1.386(3)	C(11)-C(10)-C(9)	121.2(2)
C(10)-C(15)	1.407(3)	C(15)-C(10)-C(9)	120.2(2)
C(11)-C(12)	1.391(4)	C(10)-C(11)-C(12)	121.3(2)
C(11)-H(11)	0.9500	C(10)-C(11)-H(11)	119.4
C(12)-C(13)	1.374(4)	C(12)-C(11)-H(11)	119.4
C(12)-H(12)	0.9500	C(13)-C(12)-C(11)	119.7(2)
C(13)-C(14)	1.394(3)	C(13)-C(12)-H(12)	120.1
C(13)-H(13)	0.9500	C(11)-C(12)-H(12)	120.1
C(14)-C(15)	1.391(3)	C(12)-C(13)-C(14)	120.5(2)
C(14)-H(14)	0.9500	C(12)-C(13)-H(13)	119.7
C(15)-C(16)	1.499(3)	C(14)-C(13)-H(13)	119.7
C(16)-C(17)	1.502(3)	C(15)-C(14)-C(13)	119.7(2)
C(18)-H(18A)	0.9800	C(15)-C(14)-H(14)	120.2
C(18)-H(18B)	0.9800	C(13)-C(14)-H(14)	120.2

Table S9. Bond lengths [A] and angles [deg] for 2e.

C(18)-H(18C)	0.9800	C(14)-C(15)-C(10)	120.3(2)
C(19)-H(19A)	0.9800	C(14)-C(15)-C(16)	120.0(2)
C(19)-H(19B)	0.9800	C(10)-C(15)-C(16)	119.7(2)
C(19)-H(19C)	0.9800	N(3)-C(16)-C(15)	125.9(2)
N(1)-S(1)-C(3)	95.82(13)	N(3)-C(16)-C(17)	112.25(19)
C(4)-O(1)-C(5)	118.46(19)	C(15)-C(16)-C(17)	121.82(18)
N(2)-O(2)-C(9)	106.49(17)	O(4)-C(17)-O(3)	124.2(2)
C(17)-O(3)-C(18)	115.06(18)	O(4)-C(17)-C(16)	124.6(2)
N(3)-O(5)-C(19)	107.70(18)	O(3)-C(17)-C(16)	111.14(18)
C(1)-N(1)-S(1)	108.6(2)	O(3)-C(18)-H(18A)	109.5
C(4)-N(2)-O(2)	112.1(2)	O(3)-C(18)-H(18B)	109.5
C(16)-N(3)-O(5)	112.44(18)	H(18A)-C(18)-H(18B)	109.5
N(1)-C(1)-C(2)	117.2(3)	O(3)-C(18)-H(18C)	109.5
N(1)-C(1)-Cl(1)	119.1(2)	H(18A)-C(18)-H(18C)	109.5
C(2)-C(1)-Cl(1)	123.7(2)	H(18B)-C(18)-H(18C)	109.5
C(3)-C(2)-C(1)	110.2(2)	O(5)-C(19)-H(19A)	109.5
C(3)-C(2)-Cl(2)	126.6(2)	O(5)-C(19)-H(19B)	109.5
C(1)-C(2)-Cl(2)	123.3(2)	H(19A)-C(19)-H(19B)	109.5
C(2)-C(3)-C(4)	133.5(2)	O(5)-C(19)-H(19C)	109.5
C(2)-C(3)-S(1)	108.3(2)	H(19A)-C(19)-H(19C)	109.5
C(4)-C(3)-S(1)	118.22(19)	H(19B)-C(19)-H(19C)	109.5
N(2)-C(4)-O(1)	129.7(3)		

Symmetry transformations used to generate equivalent atoms:

Table S10. Anisotropic displacement parameters (A² x 10³) for **2e**.

The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
S(1)	72(1)	39(1)	66(1)	3(1)	-5(1)	-27(1)
Cl(1)	78(1)	48(1)	57(1)	-7(1)	16(1)	0(1)
Cl(2)	38(1)	42(1)	44(1)	-5(1)	4(1)	-16(1)
O(1)	28(1)	45(1)	58(1)	14(1)	0(1)	-11(1)
O(2)	31(1)	47(1)	42(1)	-2(1)	5(1)	-14(1)
O(3)	36(1)	27(1)	51(1)	-8(1)	9(1)	-8(1)
O(4)	37(1)	41(1)	58(1)	-7(1)	10(1)	-19(1)
O(5)	31(1)	31(1)	52(1)	-13(1)	13(1)	-6(1)
N(1)	88(2)	40(1)	65(2)	-8(1)	3(2)	-20(1)
N(2)	31(1)	46(1)	34(1)	2(1)	0(1)	-13(1)
N(3)	28(1)	30(1)	41(1)	-4(1)	4(1)	-9(1)
C(1)	60(2)	37(1)	44(2)	0(1)	-4(1)	-8(1)
C(2)	40(1)	34(1)	36(1)	2(1)	-8(1)	-10(1)
C(3)	34(1)	36(1)	39(1)	6(1)	-10(1)	-11(1)
C(4)	29(1)	44(1)	38(1)	8(1)	-7(1)	-14(1)
C(5)	30(1)	48(2)	80(2)	12(1)	6(1)	-11(1)
C(6)	40(2)	59(2)	89(2)	-4(2)	15(2)	-15(1)
C(7)	34(1)	48(2)	51(2)	6(1)	-5(1)	-16(1)
C(8)	57(2)	61(2)	87(3)	15(2)	-13(2)	-22(2)
C(9)	33(1)	32(1)	50(2)	3(1)	4(1)	-4(1)
C(10)	29(1)	21(1)	44(1)	-5(1)	6(1)	-5(1)
C(11)	36(1)	28(1)	51(2)	-5(1)	13(1)	-10(1)
C(12)	33(1)	37(1)	62(2)	-13(1)	15(1)	-18(1)
C(13)	27(1)	47(2)	54(2)	-16(1)	4(1)	-14(1)
C(14)	29(1)	41(1)	39(1)	-9(1)	2(1)	-9(1)
C(15)	24(1)	28(1)	39(1)	-9(1)	8(1)	-8(1)
C(16)	23(1)	29(1)	33(1)	-4(1)	1(1)	-6(1)
C(17)	30(1)	31(1)	35(1)	-5(1)	3(1)	-10(1)
C(18)	51(2)	28(1)	62(2)	-6(1)	6(1)	-12(1)
C(19)	35(1)	45(2)	58(2)	-16(1)	12(1)	2(1)

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

Table S11.	Hydrogen coordinates	(x 10^4)	and isotropic

	Х	У	Z	U(eq)
H(5A)	1315	4602	1491	65
H(5B)	1459	4371	2451	65
H(6)	1050	1619	1550	75
H(7A)	-1754	2028	2123	53
H(7B)	-1417	3678	2539	53
H(8A)	987	1935	3258	82
H(8B)	650	285	2842	82
H(9A)	3346	8337	2715	48
H(9B)	4325	8392	1869	48
H(11)	7272	8334	1943	46
H(12)	9912	7600	2596	51
H(13)	10130	6094	3854	50
H(14)	7737	5215	4452	43
H(18A)	5321	750	4108	70
H(18B)	6718	633	3401	70
H(18C)	4718	1233	3197	70
H(19A)	975	9174	4340	70
H(19B)	2118	10280	4710	70
H(19C)	1837	8580	5200	70

displacement parameters (A^2 x 10^3) for **2e**.

	Torsion angles	[deg]	Torsion angles [deg]
C(3)-S(1)-N(1)-C(1)	0.1(2)	C(5)-C(6)-C(8)-C(7)	107.8(3)
C(9)-O(2)-N(2)-C(4)	165.76(19)	N(2)-O(2)-C(9)-C(10)	-71.5(2)
C(19)-O(5)-N(3)-C(16)	177.0(2)	O(2)-C(9)-C(10)-C(11)	117.1(2)
S(1)-N(1)-C(1)-C(2)	-0.5(3)	O(2)-C(9)-C(10)-C(15)	-61.7(3)
S(1)-N(1)-C(1)-Cl(1)	178.82(15)	C(15)-C(10)-C(11)-C(12)	-0.6(3)
N(1)-C(1)-C(2)-C(3)	0.8(3)	C(9)-C(10)-C(11)-C(12)	-179.4(2)
Cl(1)-C(1)-C(2)-C(3)	-178.49(19)	C(10)-C(11)-C(12)-C(13)	-0.4(4)
N(1)-C(1)-C(2)-Cl(2)	-179.8(2)	C(11)-C(12)-C(13)-C(14)	1.3(4)
Cl(1)-C(1)-C(2)-Cl(2)	0.9(3)	C(12)-C(13)-C(14)-C(15)	-1.0(4)
C(1)-C(2)-C(3)-C(4)	178.6(2)	C(13)-C(14)-C(15)-C(10)	-0.1(3)
Cl(2)-C(2)-C(3)-C(4)	-0.8(4)	C(13)-C(14)-C(15)-C(16)	178.7(2)
C(1)-C(2)-C(3)-S(1)	-0.7(3)	C(11)-C(10)-C(15)-C(14)	0.9(3)
Cl(2)-C(2)-C(3)-S(1)	179.94(14)	C(9)-C(10)-C(15)-C(14)	179.7(2)
N(1)-S(1)-C(3)-C(2)	0.4(2)	C(11)-C(10)-C(15)-C(16)	-177.89(19)
N(1)-S(1)-C(3)-C(4)	-179.00(19)	C(9)-C(10)-C(15)-C(16)	0.9(3)
O(2)-N(2)-C(4)-O(1)	0.2(3)	O(5)-N(3)-C(16)-C(15)	0.0(3)
O(2)-N(2)-C(4)-C(3)	-176.79(19)	O(5)-N(3)-C(16)-C(17)	-179.15(17)
C(5)-O(1)-C(4)-N(2)	52.5(4)	C(14)-C(15)-C(16)-N(3)	103.2(3)
C(5)-O(1)-C(4)-C(3)	-130.4(3)	C(10)-C(15)-C(16)-N(3)	-78.0(3)
C(2)-C(3)-C(4)-N(2)	7.5(4)	C(14)-C(15)-C(16)-C(17)	-77.7(3)
S(1)-C(3)-C(4)-N(2)	-173.36(17)	C(10)-C(15)-C(16)-C(17)	101.1(2)
C(2)-C(3)-C(4)-O(1)	-170.0(2)	C(18)-O(3)-C(17)-O(4)	1.3(3)
S(1)-C(3)-C(4)-O(1)	9.2(3)	C(18)-O(3)-C(17)-C(16)	-178.83(19)
C(4)-O(1)-C(5)-C(6)	149.7(3)	N(3)-C(16)-C(17)-O(4)	8.8(3)
O(1)-C(5)-C(6)-C(8)	89.1(3)	C(15)-C(16)-C(17)-O(4)	-170.4(2)
O(1)-C(5)-C(6)-C(7)	158.4(3)	N(3)-C(16)-C(17)-O(3)	-170.99(19)
C(5)-C(6)-C(7)-C(8)	-107.0(4)	C(15)-C(16)-C(17)-O(3)	9.8(3)

Table S12. Torsion angles [deg] for **2e**.

Symmetry transformations used to generate equivalent atoms: