Nucleation and Growth of Blue Phase Liquid Crystals on Chemically Patterned Surfaces: A Surface Anchoring Assisted Blue Phase Correlation Length

Supporting Information

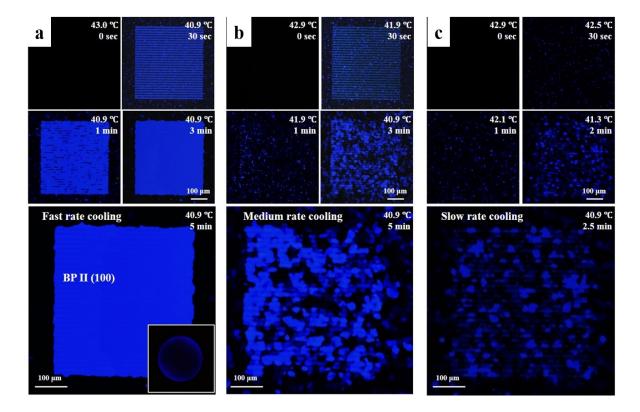
Xiao Li^{1*}, Kangho Park^{2,3}, Orlando. Guzmán^{2,4}, José A. Martínez-González⁵, James A Dolan⁶, Juan J. de Pablo^{2,7} and Paul F. Nealey ^{2,7*}

¹Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA.

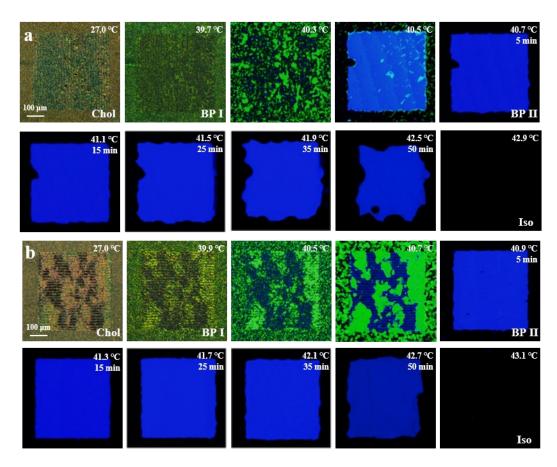
²Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, Unites States.

³Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.

⁴Departamento de Física, Universidad Autonóma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México 09340, México.


⁵Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Lateral Av. Salvador Nava s/n, San Luis Potosí 78290, SLP, México.

⁶Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK


⁷Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, United States.

*Correspondence to: Xiao.Li@unt.edu; nealey@uchicago.edu

Keywords: blue phase liquid crystal, directed self-assembly, chemical pattern, crystal growth, correlation length

Figure S1. Reflection POM images of $BPII_{(100)}$ on the short-type chemical pattern ($w_p = 10 \mu m$, $w_h = 5 \mu m$) according to different cooling processes: **a**) fast cooling, **b**) medium cooling, and **c**) slow cooling.

Figure S2. Reflection POM images of BP transition by slow heating (0.04 °C /min) process on a) long-type pattern for and b) short-type pattern, with wp = 10 μ m, wh = 5 μ m.