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1 Comparison of statistical properties of monomer se-

quence generated from simulation with theoretical

prediction

ba

Figure S1: Semi-log plot of average charged block length 〈Ncharged〉 and average squared
charged block length

〈
N2
charged

〉
as a function of λ for charge density f = 0.5. Black solid

lines are theoretical prediction: Ncharged = 1
(1−λ)(1−f) and N2

charged = 1+f+λ(1−f)
(1−λ)2(1−f)2 . Red dots

are simulation results. The 〈...〉 denotes ensemble average over all chains.
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2 The importance for experimental study to maintain

same charge density f for polyanions with different

λ values in order to verify computational and theo-

retical results

a b

Figure S2: Simulation binodal curves for coacervates formed by fully charged polycations
(f+ = 1) and polyanions with charge density f− and sequence λ−. a: Simulation results for
the conditions of our initial experimental attempt. b: Simulation results for the conditions
similar to a, but reversing the f− of the two systems. Comparing a and b shows that besides
λ−, f− also affects coacervation behavior which needs to be controlled more preciously.
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3 Dependence of coacervate density on λ for different

neutral monomer sizes

Figure S3: Dependence of the coacervate density on λ for different sizes of the neutral
monomer, σn/σ = 1.2, 0.5, and 0.25. The errors are smaller than the circle symbols. Simu-
lation parameters are equal to f+ = f− = 0.5, N = 102, and lB/σ = 1.68; the solvent quality
is good. Increasing the size of the neutral monomer facilitates microphase separation, and
λ∗ shifts to lower values.
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4 Simulation snapshots of salt-free coacervate phases

formed by charged block copolymers

ba

𝐴25 𝐶25 𝐴25 𝐶25 + 𝐵25 𝐶25 𝐵25 𝐶25 𝐴50 𝐶50 + 𝐵50 𝐶50

A: +, red
B: -, blue
C: neutral, white

Figure S4: Simulation snapshots of salt-free coacervate phases formed by charged block
copolymers using the same simulation parameters as statistical polyelectrolytes. Simulation
parameters: f+ = f− = 0.5, N = 102, and lB/σ = 1.68 (good solvent). a: For tetrablock
copolymers, the coacervate phase is still microemulsion-like structure with high fluctuation
but no obvious long range order. b: For diblock copolymers, there is a lamellar-like structure
forming within coacervate phase.
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5 Structure factors for lamellar phase of salt-free com-

plex coacervate formed by charged diblock copoly-

electrolytes

ba

Figure S5: Structure factors for salt-free coacervates formed by oppositely charged diblock
copolyelectrolytes (shown in Figure S4b). a: structure factor for all monomers, Stot(q) as a
function of q in log-log scale. b: Structure factor of the density difference between neutral
and charged monomers, Sm(q) as a function of q in log-log scale. The peaks in structure
factor plots are clear indications of lamellar-like structure within coacervate phase.
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6 Structure factors for neutral and charged monomers

of salt-free coacervate phases formed by polyelec-

trolytes with different λ values

ba

Figure S6: Structure factors for neutral and charged monomers within coacervate phases
in log-log scale. Simulation parameters: f+ = f− = 0.5, N = 102, and lB/σ = 1.68 (good
solvent). a: Structure factor calculated for only ionic monomers, Si(q). b: Structure factors
calculated for only neutral monomers, Sn(q).
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7 Inverse structure factor calculated based on density

difference between neutral and charged monomers

for λ = −1 deviates severely from Ornstein-Zernike

expression

Figure S7: Inverse structure factors for λ = −1 as a function of q2 fitted by Ornstein-Zernike
expression. Simulation parameters: f+ = f− = 0.5, N = 102, and lB/σ = 1.68 (good
solvent).
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8 Inverse structure factors calculated based on density

difference between neutral and charged monomers

for different λ values are fitted by microemulsion

structure factor

ba

Figure S8: Inverse structure factors, 1/Sm(q) for different λ values as a function of q2 fitted
by microemulsion structure factor: 1/S(q)m = c0q

4 + c1q
2 + c2. Dash lines are fitted lines.

a: full plot with 0 < 1/Sm(q) < 1.5 and 0 < q2σ2 ≤ 1; b: partially enlarged plot of a with
0 < 1/Sm(q) < 0.125 and 0 < q2σ2 ≤ 0.4. Simulation parameters: f+ = f− = 0.5, N = 102,
and lB/σ = 1.68 (good solvent).

Table S1: Fitted coefficients of microemulsion structure factor for Figure S8.

λ c0 c1 c2

0 0.132 -0.051 0.838
0.3 0.030 0.072 0.394
0.5 0.004 0.124 0.198
0.7 -0.022 0.156 0.074
0.8 0.003 0.127 0.036
0.85 -0.008 0.151 0.011
0.9 -0.020 0.176 0.002
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9 Inverse structure factors calculated based on density

difference between neutral and charged monomers

for different λ values are fitted by Porod’s law

ba

Figure S9: Inverse structure factors, 1/Sm(q) for different λ values as a function of q4 fitted
by Porod’s law: 1/S(q)m = c0q

4 at high q regime (10 < q4σ4 < 16). Dash lines are fitted
lines. a: full plot with 0 < 1/Sm(q) ≤ 1.2 and 0 < q4σ4 < 16; b: partially enlarged plot of
a with 0.4 ≤ 1/Sm(q) ≤ 1.2 and 10 < q4σ4 < 16. Simulation parameters: f+ = f− = 0.5,
N = 102, and lB/σ = 1.68 (good solvent).
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