Controlling Light Emitting Properties in Bis(pyrenyl)-di-imines by Tuning Chemical Functionality of Spacer Group

Moyna Das ${ }^{[a]}$, Vishakha Jaswal ${ }^{[a]}$, Suvendu Maity ${ }^{\left[b,{ }^{]}\right.}$Prasanta Ghosh ${ }^{[b]}$ and Madhushree Sarkar*[a]
${ }^{[a]}$ Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India. Fax: +91-1596-244183; Tel: +91-1596-255679; E-mail: msarkar@pilani.bits-pilani.ac.in
${ }^{[b]}$ Department of Chemistry, Narendrapur Ramakrishna Mission, Kolkata, West Bengal, India. E-mail: ghosh@pghosh.in

SUPPORTING INFORMATION

INDEX

Figure S1-S3: IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{L 1}$
Figure S4-S6: IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{L 2}$
Figure S7-S9: IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{L 3}$
Figure S10-S13: IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and HRMS of L4
Figure S14-S17: IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HRMS of L5
Figure S18: Illustrations of crystal structure of $\mathbf{L 1}$
Figure S19: Illustrations of crystal structures of literature reports on derivatives of pyrenes
Figure S20: UV-Visible spectra of L2-L4
Figure S21-S22: PL Spectra of L2, L4 and L5
Table S1: Comparison of published melting points and the spectroscopy data with the compounds synthesized in the current work

Experimental Details

General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHZ spectrometer. FTIR spectra were obtained from Shimadzu IRAffinity-1S system. Powder X-Ray Diffraction (XRD) data was collected using a Rigaku miniflex II, $\lambda=1.54 \AA, \mathrm{Cu} \mathrm{K} \alpha$. UV-Visible and fluorescence spectra were recorded on Jasco V-650 spectrophotometer and Fluorimax-4 0426C0809 respectively. Absolute quantum yield was measured by using quanta ϕ instrument.

Single Crystal XRD

The single-crystal XRD analysis of L1 was done at Narendrapur Ramkrishna Mission, Kolkata, using a Bruker AXS D8 QUEST ECO diffractometer equipped with monochromatic Mo-target rotating anode X-ray and graphite monochromator α radiation with $\lambda=0.71073 \AA$ by ω and φ scan technique. The integrated diffraction data, unit cell, and data correction were performed using Bruker SAINT system, SMART, and SADABS respectively. The structure was solved by SHELXS-97 through the direct method and refined by full-matrix leastsquares based on F^{2} through SHELXS-2018/3. ${ }^{1}$ The hydrogen atoms were added at determined positions as riding atoms and non-H atoms were refined anisotropically.

Synthesis of ($1 E, 1$ ' E)-N, N^{\prime}-(1,4-phenylene)bis(1-(pyren-1-yl)methanimine) (L1) ${ }^{2}$

 p-Phenylene diamine ($0.270 \mathrm{~g}, 2.5 \mathrm{mmol}$) and catalytic amount of trifluoroacetic acid (TFA, 23 drops) were added to the solution of 1pyrenecarboxaldehyde in dimethylacetamide (DMA) ($1.15 \mathrm{~g}, 5 \mathrm{mmol}$). The mixture was refluxed for 24 hours. Bright yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 59\%; Melting point: 315-316 ${ }^{\circ} \mathrm{C}$; IR (cm^{-1}): 3047 (w), 2360 (w), 1597 (s , 1481 (m), 1203 (m), 964 (m), 895 (m), 849 (m), 763 (m), 710 (s), 610 (w), 502 (w) (Figure S1); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}$: $9.80(2 \mathrm{H}, \mathrm{s}$, imine CH), $9.37(2 \mathrm{H}, \mathrm{d}, J=$ $9.4 \mathrm{~Hz}, \mathrm{ArH}), 8.88(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 8.55-8.13$ (14H, br, ArH), 7.71 ($4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) (Figure S2); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ ppm: 150.24, 133.43, 131.19, 130.56, 130.16,
$130.15,129.43,128.59,127.69,127.65,127.23,126.87,125.43,125.30,124.43,124.36$, 123.76, 123.38, 115.10 (Figure S3).

Synthesis of (1E,2E)-1,2-bis(pyren-1-ylmethylene)hydrazine (L2) ${ }^{\mathbf{2}}$

Hydrazine hydrate ($0.121 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise to ethanolic solution of 1-pyrenecarboxaldehyde ($1.15 \mathrm{~g}, 5 \mathrm{mmol}$), then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Pale yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 52%; Melting point: $308-309{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right): 3099$ (w), 2360 (w), 1913 (w), 1597 (s), 1388 (w), 1311 (w),
 1242 (m), 1804 (m), 887 (w), 817 (s), 748 (m), 709 (m), 678 (w), 509 (m) (Figure S4); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}: 9.94(2 \mathrm{H}, \mathrm{s}$, imine CH), $9.30(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{ArH})$, $8.86(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.53-8.42(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.41-8.28$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.19 (2 H , $\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}$) (Figure S5); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta \mathrm{ppm}: 150.89,133.19$, 131.28, 130.65, 129.93, 129.84, 129.44, 128.55, 127.73, 127.51, 127.05, 126.69, 125.38, 124.99, 124.74, 124.46, 123.89 (Figure S6).

Synthesis of (1E,1'E)-N, N^{\prime}-(ethane-1,2-diyl)bis(1-(pyren-1-yl)methanimine) (L3) ${ }^{3}$

Ethylene diamine ($0.167 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise to ethanolic solution of 1pyrenecarboxaldehyde ($1.15 \mathrm{~g}, 5 \mathrm{mmol}$) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Dark orange precipitate was removed by filtration and recrystallized from chloroform. Yield: 48\%; Melting point: 225-226 ${ }^{\circ} \mathrm{C}$; IR (cm^{-1}): 1627 (s), 1435 (w), 1242 (w), 1064 (w),
 972 (w), 840 (s), 756 (m), 717 (m), 609 (m) (Figure S7); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: $9.35(2 \mathrm{H}, \mathrm{s}$, imine CH), $8.71(2 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{ArH}), 8.54(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.23-$ $7.77(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.38\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2}\right)$ (Figure S8); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 162.43$, 135.58, 131.43, 131.13, 130.99, 130.88,
$130.75,130.47,127.47,127.24,127.09,126.87,126.60,124.73,124.59,124.12,123.07$, 47.34 (Figure S9).

Synthesis of (1E,1'E)-N, N^{\prime}-(butane-1,4-diyl)bis(1-(pyren-1-yl)methanimine) (L4) ${ }^{4}$

1,4-Diaminobutane ($0.251 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise to ethanolic solution of 1pyrenecarboxaldehyde ($1.15 \mathrm{~g}, 5 \mathrm{mmol}$) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Bright red precipitate was removed by filtration and recrystallized from chloroform. Yield:
 54%; Melting point: $231-232{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right)$: 3741
(w), 3039 (w), 2360 (w), 1743 (s), 1620 (m), 1535 (w), 1458 (w), 1365 (w), 1234 (s), 1080 (s), 856 (s), 717 (m), 632 (m) (Figure S10); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ ppm: 9.45 (2 H , s, imine CH), $9.12(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{ArH}), 8.58(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 8.39-8.19(12 \mathrm{H}$, m, ArH), $8.12(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 3.94\left(4 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{CH}_{2}\right), 1.95\left(4 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{CH}_{2}\right)$ (Figure $11) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 159.79,132.74,131.29,130.62,128.82,129.79$, $128.58,128.45,127.47,126.32,126.07,125.80$, 125.56, 124.97, 124.88, 124.69, 122.65, 62.61, 29.16 (Figure S12); HRMS: m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}=513.2325$, found 513.2302 (Figure S13).

Synthesis of ($\left.1 E, 1^{\prime} E\right)-N, N^{\prime}$-(hexane-1,6-diyl)bis(1-(pyren-1-yl)methanimine) (L5) ${ }^{4}$

Hexamethylene diamine ($0.346 \mathrm{~mL}, 2.5$ mmol) was added dropwise to ethanolic solution of 1-pyrenecarboxaldehyde ($1.15 \mathrm{~g}, 5$ mmol) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Light yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 65\%;
 Melting point: $153-154{ }^{\circ} \mathrm{C}$; IR (cm^{-1}): 3039 (w), 2360 (m), 1627 (m), 1308 (w), 1242 (w), 1804 (w), 1026 (w), 848(s), 748 (m), 678 (w) (Figure S14); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ ppm: $9.39(2 \mathrm{H}, \mathrm{s}$, imine CH), $9.11(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{ArH}), 8.53(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH})$, $8.43-8.15(12 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 8.11(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArH}), 3.84\left(4 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{CH}_{2}\right), 1.90-1.77$
($4 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{CH}_{2}$), $1.64-1.52\left(4 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{CH}_{2}\right)$ (Figure S15); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ ppm: 160.17, 132.56, 131.25, 130.57, 129.57, 129.05, 129.01, 128.93, 127.84, 126.97, 126.86, 126.46, 126.14, 125.43, 124.48, 124.22, 123.47, 61.86, 31.19, 27.26 (Figure S16); HRMS: m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}=541.2638$, found 541.2615 (Figure S17).

Figure S1: IR spectrum of L1

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 1}$

Figure S3: ${ }^{13}$ C NMR spectrum of L1

Figure S4: IR spectrum of L2

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 2$

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 2}$

Figure S7: IR spectrum of L3

Figure S8: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 3}$

Figure S9: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 3}$

Figure S10: IR spectrum of L4
 $\dot{\sigma} \sigma \infty \infty$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.45$ (s, 2H), 9.12 (d, $J=$ $9.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.39-8.19(\mathrm{~m}$, $12 \mathrm{H}), 8.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 4 \mathrm{H}), 1.95(\mathrm{~s}, 4 \mathrm{H})$.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 4}$

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 4}$

Figure S13: HRMS of L4

Figure S14: IR spectrum of L5

Figure S15: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{L 5}$

Figure S16: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{L 5}$

Figure S17: HRMS of L5

Figure S18: Illustrations of crystal structure of L1: (a) Aromatic $\pi \bullet \bullet \bullet \pi$ interactions between pyrene groups of two neighbouring L1 molecules; (b) Aromatic C-H $\bullet \bullet \pi$ interactions between phenyl C-H and pyrene group; (c) Aromatic C-H $\bullet \bullet \bullet \pi$ interactions between pyrene C-H and phenyl ring; (d) Very weak C-H $\bullet \bullet \bullet \mathrm{N}$ interactions between pyrene $\mathrm{C}-\mathrm{H}$ and imine N

Figure S19: Literature reports on derivatives of pyrenes where aromatic interactions are responsible for holding the molecules together in the solid state; (a) Intermolecular $\pi \cdots \cdots \pi$ interactions between adjacent pyrene ring systems in a pyrene based compound (CCDC: 1834096) ${ }^{5}$; (b), Molecules in pyrenyl substituted 1,8 -naphthalimide are linked via aromatic $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the pyrene groups and $1,8-$ naphthalimidyl groups (CCDC 1830576) ${ }^{6}$; (c) Molecules in pyrenyl-based triarylamines are linked together by $\pi \cdots \cdots \pi$ interactions (CCDC $1056680)^{7}$

Figure S20: UV-Visible spectra in DMF and solid-state (in BaSO_{4}): (a) $\mathbf{L 2}$; (b) $\mathbf{L 3}$; (c) $\mathbf{L 4}$; (d) $\mathbf{L 5}$

Figure S21: PL spectra of $\mathbf{L 2}$ (excitation wavelength 370 nm) in DMF at different concentrations (slit width 10 nm)

Figure S22: PL spectra of (a) L4 (excitation wavelength 400 nm) and (b) $\mathbf{L 5}$ (excitation wavelength 420 nm) in DMF at different concentrations and in solid state

Table S1: Comparison of published melting points and the spectroscopy data with the compounds synthesized in the current work

Compounds	Melting Point (Current work)	Melting Point (Literature)	${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Current workt)	${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Literature)	${ }^{13} \mathrm{C}$-NMR (Current work)	${ }^{13} \mathrm{C}-\mathrm{NMR}$ (Literature)
L1	$\begin{aligned} & 315-316 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\left[317{ }^{\circ} \mathrm{C}\right]^{2}$	9.80 (2H, s , imine CH), 9.37 (2H, d, J = 9.4 Hz , ArH), $8.88(2 \mathrm{H}$, d, $J=8.1$ $\mathrm{Hz}, \mathrm{ArH}$), 8.55-8.13 (14H, br, ArH), $7.71(4 \mathrm{H}$, s, ArH)	[9.78 (s, 2 H , CH_N), 9.35 (d, 2HAr), 8.86 (d, 2HAr), 8.44-8.16 (m, $18 \mathrm{HAr})]^{2}$	$\begin{aligned} & 150.24, \\ & 133.43 \\ & 131.19 \\ & 130.56, \\ & 130.16, \\ & 130.15, \\ & 129.43, \\ & 128.59, \\ & 127.69 \\ & 127.65, \\ & 127.23, \\ & 126.87, \\ & 125.43 \\ & 125.30 \\ & 124.43 \\ & 124.36 \\ & 123.76 \\ & 123.38 \\ & 115.10 \end{aligned}$	-
L2	$\begin{aligned} & 308-309 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & {\left[308^{\circ} \mathrm{C}\right]^{2}} \\ & {\left[311^{\circ} \mathrm{C}\right]^{4}} \end{aligned}$	$\begin{aligned} & \hline 9.94(2 \mathrm{H}, \\ & \mathrm{s}, \text { imine } \\ & \mathrm{CH}), 9.30 \\ & (2 \mathrm{H}, \mathrm{~d}, J= \\ & 9.2 \mathrm{~Hz}, \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { [9.94 (s, } \\ & 2 \mathrm{H}, \\ & \text { CH_N }), \\ & 9.03(\mathrm{~d}, \\ & 2 \mathrm{HAr}), \\ & \hline \end{aligned}$	$\begin{aligned} & 150.89, \\ & 133.19, \\ & 131.28, \\ & 130.65, \\ & 129.93, \end{aligned}$	 159.3 132.4 130.4 129.9 129.3 128.4 126.7 128.3

			ArH), 8.86 (2H, d, $J=8.0$ $\mathrm{Hz}, \mathrm{ArH}$), 8.53-8.42 (6H, m, ArH), 8.41 - 8.28 (6H, m , ArH), 8.19 (2H, $\mathrm{t}, J=7.7$ $\mathrm{Hz}, \mathrm{ArH}$)	$\begin{aligned} & 8.85(\mathrm{~d}, \\ & 2 \mathrm{HAr}), \\ & 8.30-8.08 \\ & (\mathrm{~m}, \\ & 14 \mathrm{HAr})]^{2} \end{aligned}$	$\begin{aligned} & 129.84, \\ & 129.44, \\ & 128.55, \\ & 127.73, \\ & 127.51, \\ & 127.05, \\ & 126.69, \\ & 125.38, \\ & 124.99, \\ & 124.74, \\ & 124.46, \\ & 123.89 \end{aligned}$	$\begin{aligned} & \hline 126.4126 .6 \\ & 126.2 \\ & 125.9125 .6 \\ & 125.4124 .4 \\ & 123.8 \\ & 122.8)^{8} \end{aligned}$
L3	$\begin{aligned} & 225-226 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\left[225{ }^{\circ} \mathrm{C}\right]^{3}$	$\begin{aligned} & 9.35(2 \mathrm{H}, \\ & \mathrm{s}, \text { imine } \\ & \mathrm{CH}), 8.71 \\ & (2 \mathrm{H}, \mathrm{~d}, J= \\ & 9.3 \mathrm{~Hz}, \\ & \mathrm{ArH}), 8.54 \\ & (2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}= \\ & 8.0 \mathrm{~Hz}, \\ & \mathrm{ArH}), 8.23 \\ & -7.77 \\ & (14 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{ArH}), 4.38 \\ & (4 \mathrm{H}, \mathrm{~s}, \\ & \left.2 \times \mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & {[4.35(4 \mathrm{H},} \\ & \mathrm{s}, \mathrm{CH} 2), \mathrm{d} \\ & 7.76-8.68 \\ & (18 \mathrm{H}, \mathrm{~m}, \\ & \text { pyrene }), \mathrm{d} \\ & 9.32(2 \mathrm{H}, \\ & \mathrm{s}, \mathrm{HC}=\mathrm{N})]^{3} \end{aligned}$	162.43, 135.58, 131.43, 131.13, 130.99, 130.88, 130.75, 130.47, 127.47, 127.24, 127.09, 126.87, 126.60, 124.73, 124.59, 124.12, 123.07, 47.34	-
L4	$\begin{aligned} & 231-232 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\left[230{ }^{\circ} \mathrm{C}\right]^{4}$	$\begin{aligned} & 9.45(2 \mathrm{H}, \\ & \mathrm{s}, \mathrm{imine} \\ & \mathrm{CH}), 9.12 \\ & (2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}= \\ & 9.4 \mathrm{~Hz}, \\ & \mathrm{ArH}), 8.58 \\ & (2 \mathrm{H}, \mathrm{~d}, \mathrm{~J}= \\ & 8.1 \mathrm{~Hz}, \\ & \mathrm{ArH}), 8.39 \\ & -8.19 \\ & (12 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{ArH}), 8.12 \\ & (2 \mathrm{H}, \mathrm{t}, J= \\ & 7.6 \mathrm{~Hz}, \\ & \mathrm{ArH}), 3.94 \\ & (4 \mathrm{H}, \mathrm{br}, \\ & 2 \times \mathrm{CH}, \\ & 1.95(4 \mathrm{H}, \\ & \left.\mathrm{br}, 2 \times \mathrm{CH}_{2}\right) \end{aligned}$		$\begin{aligned} & 159.79, \\ & 132.74, \\ & \text { 131.29, } \\ & \text { 130.62, } \\ & 128.82, \\ & 129.79, \\ & 128.58, \\ & 128.45, \\ & 127.47, \\ & 126.32, \\ & 126.07, \\ & 125.80, \\ & 125.56, \\ & 124.97, \\ & 124.88, \\ & 124.69, \\ & 122.65, \\ & 62.61, \\ & 29.16 \end{aligned}$	-
L5	153-154	$\left[150{ }^{\circ} \mathrm{C}\right]^{4}$	9.39 (2H,		160.17,	-

${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		s, imine CH), 9.11 (2H, d, J = 9.4 Hz , ArH), 8.53 $(2 \mathrm{H}, \mathrm{d}, J=$ 8.1 Hz , ArH), 8.43 - 8.15 (12H, br, ArH), 8.11 (2H,,$~ J=$ 7.6 Hz , ArH), 3.84 ($4 \mathrm{H}, \mathrm{br}$, $2 \times \mathrm{CH}_{2}$), 1.90-1.77 (4H, br, $2 \times \mathrm{CH}_{2}$), $1.64-1.52$ (4H, br, $2 \times \mathrm{CH}_{2}$)		132.56, 131.25, 130.57, 129.57, 129.05, 129.01, 128.93, 127.84, 126.97, 126.86, 126.46, 126.14, 125.43, 124.48, 124.22, 123.47, 61.86, 31.19, 27.26	

References:

1. G. M. Sheldrick, Acta Crystallographica Section C: Structural Chemistry, 2015, 71, 3-8.
2. D. Sęk, M. Siwy, J. G. Małecki, S. Kotowicz, S. Golba, E. M. Nowak, J. Sanetra and E. Schab-Balcerzak, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 168-176.
3. M. Kumar, A. Dhir, V. Bhalla, R. Sharma, R. K. Puri and R. K. Mahajan, Analyst, 2010, 135, 1600-1605.
4. D. Braun and R. Langendorf, Journal für praktische Chemie, 1999, 341, 128-137.
5. B.-X. Miao, X.-X. Tang and L.-F. Zhang, Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 638-641.
6. O. Bezvikonnyi, D. Gudeika, D. Volyniuk, J. V. Grazulevicius and G. Bagdziunas, New Journal of Chemistry, 2018, 42, 12492-12502.
7. R. Zhang, Y. Zhao, G. Li, D. Yang and Z. Ni, RSC Advances, 2016, 6, 9037-9048.
8. R. Martínez, A. Espinosa, A. Tárraga and P. Molina, Organic letters, 2005, 7, 58695872.
