Controlling Light Emitting Properties in Bis(pyrenyl)-di-imines by Tuning Chemical Functionality of Spacer Group

Moyna Das^[a], Vishakha Jaswal^[a], Suvendu Maity^[b,] Prasanta Ghosh^[b] and Madhushree Sarkar^{*[a]}

^[a]Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India. Fax: +91-1596-244183; Tel: +91-1596-255679; E-mail: <u>msarkar@pilani.bits-pilani.ac.in</u>

^[b] Department of Chemistry, Narendrapur Ramakrishna Mission, Kolkata, West Bengal, India. E-mail: <u>ghosh@pghosh.in</u>

SUPPORTING INFORMATION

INDEX

Figure S1-S3: IR, ¹H-NMR, and ¹³C-NMR spectra of L1
Figure S4-S6: IR, ¹H-NMR, and ¹³C-NMR spectra of L2
Figure S7-S9: IR, ¹H-NMR, and ¹³C-NMR spectra of L3
Figure S10-S13: IR, ¹H-NMR, ¹³C-NMR and HRMS of L4
Figure S14-S17: IR, ¹H-NMR, ¹³C-NMR, and HRMS of L5
Figure S18: Illustrations of crystal structure of L1
Figure S19: Illustrations of crystal structures of literature reports on derivatives of pyrenes
Figure S20: UV-Visible spectra of L2-L4
Figure S21-S22: PL Spectra of L2, L4 and L5
Table S1: Comparison of published melting points and the spectroscopy data with the compounds synthesized in the current work

Experimental Details General

¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHZ spectrometer. FTIR spectra were obtained from Shimadzu IRAffinity-1S system. Powder X-Ray Diffraction (XRD) data was collected using a Rigaku miniflex II, $\lambda = 1.54$ Å, Cu Ka. UV-Visible and fluorescence spectra were recorded on Jasco V-650 spectrophotometer and Fluorimax-4 0426C0809 respectively. Absolute quantum yield was measured by using quanta ϕ instrument.

Single Crystal XRD

The single-crystal XRD analysis of L1 was done at Narendrapur Ramkrishna Mission, Kolkata, using a Bruker AXS D8 QUEST ECO diffractometer equipped with monochromatic Mo-target rotating anode X-ray and graphite monochromator α radiation with $\lambda = 0.71073$ Å by ω and φ scan technique. The integrated diffraction data, unit cell, and data correction were performed using Bruker SAINT system, SMART, and SADABS respectively. The structure was solved by SHELXS-97 through the direct method and refined by full-matrix least-squares based on F^2 through SHELXS-2018/3.¹ The hydrogen atoms were added at determined positions as riding atoms and non-H atoms were refined anisotropically.

Synthesis of (1E,1'E)-N,N'-(1,4-phenylene)bis(1-(pyren-1-yl)methanimine) (L1)²

p-Phenylene diamine (0.270 g, 2.5 mmol) and catalytic amount of trifluoroacetic acid (TFA, 2-3 drops) were added to the solution of 1-pyrenecarboxaldehyde in dimethylacetamide (DMA) (1.15 g, 5 mmol). The mixture was refluxed for 24 hours. Bright yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 59%; Melting point: 315 - 316 °C; IR (cm⁻¹): 3047 (w), 2360 (w),

1597 (s), 1481 (m), 1203 (m), 964 (m), 895 (m), 849 (m), 763 (m), 710 (s), 610 (w), 502 (w) (Figure S1); ¹H NMR (400MHz, DMSO-*d*₆) δ ppm: 9.80 (2H, s, imine CH), 9.37 (2H, d, J = 9.4 Hz, ArH), 8.88 (2H, d, J = 8.1 Hz, ArH), 8.55 – 8.13 (14H, br, ArH), 7.71 (4H, s, ArH) (Figure S2); ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm: 150.24, 133.43, 131.19, 130.56, 130.16,

130.15, 129.43, 128.59, 127.69, 127.65, 127.23, 126.87,125.43, 125.30, 124.43, 124.36, 123.76, 123.38, 115.10 (Figure S3).

Synthesis of (1*E*,2*E*)-1,2-bis(pyren-1-ylmethylene)hydrazine (L2)²

Hydrazine hydrate (0.121 mL, 2.5 mmol) was added dropwise to ethanolic solution of 1-pyrenecarboxaldehyde (1.15 g, 5 mmol), then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Pale yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 52%; Melting point: 308-309 °C; IR (cm⁻¹): 3099 (w), 2360 (w), 1913 (w), 1597 (s), 1388 (w), 1311 (w),

1242 (m), 1804 (m), 887 (w), 817 (s), 748 (m), 709 (m), 678 (w), 509 (m) (Figure S4); ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm: 9.94 (2H, s, imine CH), 9.30 (2H, d, *J* = 9.2 Hz, ArH), 8.86 (2H, d, *J* = 8.0 Hz, ArH), 8.53 – 8.42 (6H, m, ArH), 8.41 – 8.28 (6H, m, ArH), 8.19 (2H, t, *J* = 7.7 Hz, ArH) (Figure S5); ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm: 150.89, 133.19, 131.28, 130.65, 129.93, 129.84, 129.44, 128.55, 127.73, 127.51, 127.05, 126.69, 125.38, 124.99, 124.74, 124.46, 123.89 (Figure S6).

Synthesis of (1E,1'E)-N,N'-(ethane-1,2-diyl)bis(1-(pyren-1-yl)methanimine) (L3)³

Ethylene diamine (0.167 mL, 2.5 mmol) was added dropwise to ethanolic solution of 1pyrenecarboxaldehyde (1.15 g, 5 mmol) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Dark orange precipitate was removed by filtration and recrystallized from chloroform. Yield: 48%; Melting point: 225 - 226 °C; IR (cm⁻¹): 1627 (s), 1435 (w), 1242 (w), 1064 (w),

972 (w), 840 (s), 756 (m), 717 (m), 609 (m) (Figure S7); ¹H NMR (400 MHz, CDCl₃) δ ppm: 9.35 (2H, s, imine CH), 8.71 (2H, d, J = 9.3 Hz, ArH), 8.54 (2H, d, J = 8.0 Hz, ArH), 8.23 – 7.77 (14H, m, ArH), 4.38 (4H, s, 2×CH₂) (Figure S8); ¹³C NMR (100 MHz, CDCl₃) δ ppm: ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.43, 135.58, 131.43, 131.13, 130.99, 130.88, 130.75, 130.47, 127.47, 127.24, 127.09, 126.87, 126.60, 124.73, 124.59, 124.12, 123.07, 47.34 (Figure S9).

Synthesis of (1E,1'E)-N,N'-(butane-1,4-diyl)bis(1-(pyren-1-yl)methanimine) (L4)⁴

1,4-Diaminobutane (0.251 mL, 2.5 mmol) was added dropwise to ethanolic solution of 1pyrenecarboxaldehyde (1.15 g, 5 mmol) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Bright red precipitate was removed by filtration and recrystallized from chloroform. Yield: 54%; Melting point: 231-232 °C; IR (cm⁻¹): 3741

(w), 3039 (w), 2360 (w), 1743 (s), 1620(m), 1535 (w), 1458 (w), 1365 (w), 1234 (s), 1080 (s), 856 (s), 717 (m), 632 (m) (Figure S10); ¹H NMR (400 MHz, DMSO- d_6) δ ppm: 9.45 (2H, s, imine CH), 9.12 (2H, d, J = 9.4 Hz, ArH), 8.58 (2H, d, J = 8.1 Hz, ArH), 8.39 – 8.19 (12H, m, ArH), 8.12 (2H, t, J = 7.6 Hz, ArH), 3.94 (4H, br, 2×CH₂), 1.95 (4H, br, 2×CH₂) (Figure 11); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 159.79, 132.74, 131.29, 130.62, 128.82, 129.79, 128.58, 128.45, 127.47, 126.32, 126.07, 125.80, 125.56, 124.97, 124.88, 124.69, 122.65, 62.61, 29.16 (Figure S12); HRMS: m/z calcd for C₃₈H₂₈N₂ (M+H)⁺ = 513.2325, found 513.2302 (Figure S13).

Synthesis of (1E,1'E)-N,N'-(hexane-1,6-diyl)bis(1-(pyren-1-yl)methanimine) (L5)⁴

Hexamethylene diamine (0.346 mL, 2.5 mmol) was added dropwise to ethanolic solution of 1-pyrenecarboxaldehyde (1.15 g, 5 mmol) then catalytic amount of TFA (2-3 drops) was added to this solution. The mixture was refluxed for 24 hours. Light yellow precipitate was removed by filtration and recrystallized from chloroform. Yield: 65%;

Melting point: 153-154 °C; IR (cm⁻¹): 3039 (w), 2360 (m), 1627 (m), 1308 (w), 1242 (w), 1804 (w), 1026 (w), 848(s), 748 (m), 678 (w) (Figure S14); ¹H NMR (400 MHz, DMSO- d_6) δ ppm: 9.39 (2H, s, imine CH), 9.11 (2H, d, J = 9.4 Hz, ArH), 8.53 (2H, d, J = 8.1 Hz, ArH), 8.43 – 8.15 (12H, br, ArH), 8.11 (2H, t, J = 7.6 Hz, ArH), 3.84 (4H, br, 2×CH₂), 1.90 – 1.77

(4H, br, 2×CH₂), 1.64 – 1.52 (4H, br, 2×CH₂) (Figure S15); ¹³C NMR (100 MHz, DMSO-*d*₆) δ ppm: 160.17, 132.56, 131.25, 130.57, 129.57, 129.05, 129.01, 128.93, 127.84, 126.97, 126.86, 126.46, 126.14, 125.43, 124.48, 124.22, 123.47, 61.86, 31.19, 27.26 (Figure S16); HRMS: m/z calcd for C₄₀H₃₂N₂ (M+H)⁺ = 541.2638, found 541.2615 (Figure S17).

Figure S1: IR spectrum of L1

¹³C NMR (100 MHz, DMSO-*d*₆) δ 150.24, 133.43, 131.19, 130.56, 130.16, 130.15, 129.43, 128.59, 127.69, 127.65,

127.23, 126.87, 125.43, 125.30, 124.43, 124.36, 123.76,

123.38, 115.10.

00

Figure S3: ¹³C NMR spectrum of L1

-6000

-5000

-4000

-3000

-2000

1000

-1000

-0

10

Figure S4: IR spectrum of L2

Figure S5: ¹H NMR spectrum of L2

Figure S6: ¹³C NMR spectrum of L2

Figure S9: ¹³C NMR spectrum of L3

Figure S10: IR spectrum of L4

Figure S11: ¹H NMR spectrum of L4

Figure S12: ¹³C NMR spectrum of L4

Figure S13: HRMS of L4

Figure S14: IR spectrum of L5

Figure S15: ¹H NMR of L5

Figure S16: ¹³C NMR of L5

Figure S17: HRMS of L5

Figure S18: Illustrations of crystal structure of L1: (a) Aromatic $\pi \bullet \bullet \bullet \pi$ interactions between pyrene groups of two neighbouring L1 molecules; (b) Aromatic C-H $\bullet \bullet \bullet \pi$ interactions between phenyl C-H and pyrene group; (c) Aromatic C-H $\bullet \bullet \bullet \pi$ interactions between pyrene C-H and phenyl ring; (d) Very weak C-H $\bullet \bullet \bullet \bullet$ interactions between pyrene C-H and imine N

Figure S19: Literature reports on derivatives of pyrenes where aromatic interactions are responsible for holding the molecules together in the solid state; (a) Intermolecular $\pi^{\bullet\bullet\bullet}\pi$ interactions between adjacent pyrene ring systems in a pyrene based compound (CCDC: 1834096)⁵; (b), Molecules in pyrenyl substituted 1,8-naphthalimide are linked via aromatic C-H $\bullet\bullet\bullet\pi$ interactions between the pyrene groups and 1,8-naphthalimidyl groups (CCDC 1830576)⁶; (c) Molecules in pyrenyl-based triarylamines are linked together by $\pi\bullet\bullet\bullet\pi$ interactions (CCDC 1056680)⁷

Figure S20: UV-Visible spectra in DMF and solid-state (in BaSO₄): (a) L2; (b) L3; (c) L4; (d) L5

Figure S21: PL spectra of L2 (excitation wavelength 370 nm) in DMF at different concentrations (slit width 10 nm)

Figure S22: PL spectra of (a) **L4** (excitation wavelength 400 nm) and (b) **L5** (excitation wavelength 420 nm) in DMF at different concentrations and in solid state

Table S1: Comparison of published melting points and the spectroscopy data with the compounds synthesized in the current work

Compounds	Melting	Melting	¹ H-NMR	¹ H-NMR	¹³ C-NMR	¹³ C-NMR
_	Point	Point	(Current	(Literature)	(Current	(Literature)
	(Current	(Literature)	workt)		work)	
	work)					
L1	315 - 316	$[317 \ ^{\circ}C]^2$	9.80 (2H,	[9.78 (s,	150.24,	-
	°C		s, imine	2Н,	133.43,	
			CH), 9.37	CH_N),	131.19,	
			(2H, d, <i>J</i> =	9.35 (d,	130.56,	
			9.4 Hz,	2HAr),	130.16,	
			ArH),	8.86 (d,	130.15,	
			8.88 (2H,	2HAr),	129.43,	
			d, <i>J</i> = 8.1	8.44-8.16	128.59,	
			Hz, ArH),	(m,	127.69,	
			8.55 - 8.13	18HAr)] ²	127.65,	
			(14H, br,		127.23,	
			ArH),		126.87,	
			7.71 (4H,		125.43,	
			s, ArH)		125.30,	
					124.43,	
					124.36,	
					123.76,	
					123.38,	
					115.10	
L2	308-309	$[308 \ ^{\circ}C]^2$	9.94 (2H,	[9.94 (s,	150.89,	(159.3
	°C	[311 °C] ⁴	s, imine	2Н,	133.19,	132.4
			CH), 9.30	CH_N),	131.28,	130.4 129.9
			(2H, d, <i>J</i> =	9.03 (d,	130.65,	129.3 128.4
			9.2 Hz,	2HAr),	129.93,	126.7 128.3

			ArH).	8.85 (d.	129.84.	126.4 126.6
			8.86 (2H.	2HAr).	129.44.	126.2
			$d_{1}I = 8.0$	8.30-8.08	128.55	125.9 125.6
			Hz. ArH).	(m.	127.73.	125.4 124.4
			8.53 - 8.42	$(14)^{14}$	127.51.	123.8
			(6H. m.		127.05.	$122.8)^8$
			ArH), 8,41		126.69.	
			-8.28(6H)		125.38	
			m. ArH).		124.99.	
			8.19 (2H.		124.74.	
			t. $J = 7.7$		124.46.	
			Hz. ArH)		123.89	
L3	225 - 226	$[225 \ ^{\circ}C]^{3}$	9.35 (2H.	[4.35 (4H.	162.43.	-
	°C	[0]	s. imine	s. CH2). d	135.58.	
	-		CH). 8.71	7.76-8.68	131.43.	
			(2H, d, J =	(18H. m.	131.13.	
			9.3 Hz.	pyrene). d	130.99.	
			ArH), 8.54	9.32 (2H.	130.88.	
			(2H. d. J =	s. $HC=N)1^3$	130.75.	
			8.0 Hz.		130.47.	
			ArH), 8.23		127.47.	
			-7.77		127.24.	
			(14H. m.		127.09.	
			ArH), 4.38		126.87.	
			(4H, s,		126.60.	
			$2 \times CH_2$		124.73.	
			2/(0112)		124.59.	
					124.12.	
					123.07.	
					47.34	
L4	231-232	[230 °C] ⁴	9.45 (2H,		159.79,	-
	°C	L J	s, imine		132.74,	
			CH), 9.12		131.29.	
			(2H, d, J =		130.62.	
			9.4 Hz.		128.82.	
			ArH), 8.58		129.79,	
			(2H, d, J =		128.58,	
			8.1 Hz.		128.45,	
			ArH), 8.39		127.47,	
			- 8.19		126.32,	
			(12H, m,		126.07,	
			ArH), 8.12		125.80,	
			(2H, t, J =		125.56,	
			7.6 Hz,		124.97,	
			ArH), 3.94		124.88,	
			(4H, br,		124.69,	
			2×CH ₂).		122.65,	
			1.95 (4H.		62.61,	
			br. $2 \times CH_2$		29.16	
L5	153-154	[150 °C] ⁴	9.39 (2H.		160.17,	-

°C	s, imine	132.56,	
	CH), 9.11	131.25,	
	(2H, d, <i>J</i> =	130.57,	
	9.4 Hz,	129.57,	
	ArH), 8.53	129.05,	
	(2H, d, <i>J</i> =	129.01,	
	8.1 Hz,	128.93,	
	ArH), 8.43	127.84,	
	- 8.15	126.97,	
	(12H, br,	126.86,	
	ArH), 8.11	126.46,	
	(2H, t, <i>J</i> =	126.14,	
	7.6 Hz,	125.43,	
	ArH), 3.84	124.48,	
	(4H, br,	124.22,	
	2×CH ₂),	123.47,	
	1.90 - 1.77	61.86,	
	(4H, br,	31.19,	
	2×CH ₂),	27.26	
	1.64 - 1.52		
	(4H, br,		
	2×CH ₂)		

References:

- 1. G. M. Sheldrick, Acta Crystallographica Section C: Structural Chemistry, 2015, 71, 3-8.
- 2. D. Sęk, M. Siwy, J. G. Małecki, S. Kotowicz, S. Golba, E. M. Nowak, J. Sanetra and E. Schab-Balcerzak, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2017, **175**, 168-176.
- 3. M. Kumar, A. Dhir, V. Bhalla, R. Sharma, R. K. Puri and R. K. Mahajan, *Analyst*, 2010, **135**, 1600-1605.
- 4. D. Braun and R. Langendorf, *Journal für praktische Chemie*, 1999, **341**, 128-137.
- 5. B.-X. Miao, X.-X. Tang and L.-F. Zhang, *Acta Crystallographica Section E: Crystallographic Communications*, 2018, **74**, 638-641.
- 6. O. Bezvikonnyi, D. Gudeika, D. Volyniuk, J. V. Grazulevicius and G. Bagdziunas, *New Journal of Chemistry*, 2018, **42**, 12492-12502.
- 7. R. Zhang, Y. Zhao, G. Li, D. Yang and Z. Ni, *RSC Advances*, 2016, 6, 9037-9048.
- 8. R. Martínez, A. Espinosa, A. Tárraga and P. Molina, *Organic letters*, 2005, 7, 5869-5872.