Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2021

Supporting information

Content

Powder X-Ray diffraction data	1
Geometry parameters	2
RDG analysis	5
Single point calculations with periodic boundary conditions	6
DFT calculation of Frank-Condon excitation processes	6
Experimental photophysical properties	19
DFT calculation of relaxation processes	21
Spin-orbital coupling matrix coefficients	23
Single-crystal X-Ray diffraction data	25

Powder X-Ray diffraction data

Figure S1 – Experimental (top) and simulated (bottom) PXRD patterns for **1** (black), **2** (green) and **3** (blue).

Geometry parameters

Table S1 – Experimental hydrogen bond characteristics for compounds 1-3. *D* is a donor atom, *A* is an acceptor atom.

	D	н	A	<i>D</i> –H, Å	H… <i>A,</i> Å	<i>D</i> …A, Å	<i>D</i> –H… <i>A</i> , deg
1	N2	H2	N1	0.850(13)	2.009(15)	2.7167(16)	140.2(15)
2	N12	H12	N11	0.871(9)	1.950(13)	2.6944(17)	142.6(16)
2	N22	H22	N21	0.871(9)	2.025(13)	2.7513(17)	140.1(16)
2	N12	H12	N11	0.873(9)	1.941(15)	2.669(2)	139.9(18)
Э	N22	H22	N21	0.875(9)	1.956(15)	2.694(2)	141.2(18)

Fig. S2 – A fragment of crystal packing for compound **1** showing parallel arrangement of *pbt* moielties highlighted turquoise. Phenyl groups capping the pair of parallel *pbt*s are highlighted orange. *pbt* moiety is denoted as M1, crystallographically related one is denoted with an apostrophe.

Fig. S3 – A fragment of crystal packing for compound **2** showing parallel (left) and inclined (right) arrangement of *pbt* moielties highlighted turquoise. Phenyl groups capping the pair of parallel *pbts* via T-shaped C–H··· π contacts are highlighted orange. Crystallographically independent *pbt* moieties are denoted as M1–M2; crystallographically related ones are denoted with an apostrophe.

Fig. S4 – A fragment of crystal packing for compound **3** showing parallel arrangement of different *pbt* moielties highlighted turquoise. Moieties capping the pair of parallel *pbt*s via T-shaped C– H… π contacts are highlighted orange. Crystallographically independent *pbt* moieties are denoted as M1–M3; crystallographically related ones are denoted with an apostrophe.

Table S2 – Experimental characteristics of π - π contacts for **1**–**3**: intercentroid distance between heterocycles (M*n*–M*n*'), shortest C–H…heterocyclic center distance (M*n*–Ar), dihedral angle between heterocyclic planes (M*n*–M*n*'), dihedral angle between heterocyclic and aryl planes (M*n*–Ar); *n* is *pbt* unit number.

Mn - Ar Ar Ar Ar Ar Ar Ar $Mn - Mn'$ Mn' Mn' Mn' Mn' Mn' Mn' Mn' Mn'	1		2		3	
	M1–M1'	M1–Ar	Mn–Mn'	M <i>n</i> –Ar	Mn–Mn'	M <i>n</i> –Ar
distance, Å	3.87	3.07	3.69 <i>,</i> 4.63	3.33, 3.32	3.74, 3.44, 6.29	3.02, 4.32, 3.79
angle, deg	0	89.1	0, 60.7	45.9 <i>,</i> 60.7	0, 0, 45.6	43.6, 19.7, 37.8

Table S3 – Selected geometry parameters for experimental and optimized structures in the ground state

	N H H	N H SS	P-5 ⁵	P-5 ⁵	P-55	
	S N	S N	s N	s N	S N	
	CCNP, deg	NCCC, deg	CNPC, deg	CNP,deg	NPC, deg	NH, Å
	L	I	1	I	I	I
DFT in gas phase	13.05	1.32	99.82, 157.13	126.43	96.14, 103.19	1.022
Periodic DFT	4.48	16.55	98.17, 158.77	123.46	99.63, 101.17	1.101
Experimental	7.73	13.76	101.35 <i>,</i> 154.65	124.87	100.15 <i>,</i> 103.03	0.849
	I	I	2	I	I	I
DFT in gas phase	15.69, 28.51	0.31, 15.48	58.47, 165.98	123.57, 131.83	97.60, 102.34	1.020, 1.021
Periodic DFT	0.04, 0.76	1.53, 2.19	45.64, 152.26	128.67, 130.84	95.81, 98.16	1.098, 1.103
Experimental	2.02, 3.03	3.40, 4.12	51.64, 144.26	127.62 <i>,</i> 131.92	97.23, 100.96	0.870, 0.872
			3			
DFT in gas phase	21.62, 32.08, 79.86, 77.09	10.77, 23.44, 174.14	40.08, 40.93, 150.39, 171.49	124.95, 122.00, 121.61, 123.05	96.00, 98.39, 101.79, 102.46	1.018, 1.023
Periodic DFT	18.49, 23.55, 74.19, 80.12	2.35, 2.96, 13.00	33.95, 41.59, 148.16, 158.22	122.74, 123.76, 124.02, 124.12	96.95, 97.95, 100.43, 102.28	1.112
Experimental	7.53, 12.58, 79.52, 84.64	0.97, 1.45, 161.45	33.60, 42.33, 149.49, 157.94	126.40, 121.50, 122.72, 125.76	95.69, 98.82, 103.32, 101.51,	0.880

Figure S5 – Two projections of plot of sign (λ_2) · ρ mapped over the RDG for **1** (isovalue s = 0.5, - 0.01 a.u.< sign (λ_2) · ρ <0.01 a.u., isosurfaces colored via red-green-blue scale, where red – attractive, blue – repulsive).

Figure S6 – Plot of sign(λ_2)· ρ mapped over the RDG for two fragments of **2** (isovalue s = 0.5, -0.01 a.u.< sign(λ_2)· ρ <0.01 a.u., isosurfaces colored via red-green-blue scale, where red – attractive, blue – repulsive).

Figure S7 – Two projections of plot of sign (λ_2) · ρ mapped over the RDG for **3** (isovalue s = 0.5, - 0.01 a.u.< sign (λ_2) · ρ <0.01 a.u., isosurfaces colored via red-green-blue scale, , where red – attractive, blue – repulsive).

Single point calculations with periodic boundary conditions

Compound	HOCO-LUCO, eV	Optical gap, eV	
1	3.59	2.92	
2	3.30	2.91	
3	3.21	2.88	

Table S4 – HOCO-LUCO energies (PBE0-D3/DZVP-MOLOPT-SR-GTH) and onset optical gaps

DFT calculation of Frank-Condon excitation processes

Table S5 – Main excitation transitions of **1** in the ground state (TD-B2PLYP for singlets and TDA-B2PLYP for triplets). H – HOMO, L – LUMO

State	Wavelength, nm	Energy, eV	Oscillator strength	Transition	Contribution
S ₁	369.6	3.355	0.2190	H→L	0.9769
				H-2 → L	0.0159
	201	4.110	0.0225	$H-1 \rightarrow L$	0.3199
S ₂	301	4.119	0.0335	$H-1 \rightarrow L+1$	0.0186
				$H \rightarrow L+1$	0.6189
				H-3 → L	0.0134
	200.0	4 1 2 4	0.1514	$H-2 \rightarrow L$	0.0132
S ₃	299.9	4.134	0.1514	$H-1 \rightarrow L$	0.6064
				$H \rightarrow L+1$	0.3251
				H-3 → L	0.0729
				$H-2 \rightarrow L$	0.4401
S ₄	289.8	4.278	0.0423	$H \rightarrow L+2$	0.3613
				$H \rightarrow L+3$	0.0389
				$H \rightarrow L+6$	0.0253
				H-3 → L	0.1453
			0.0333	$H-2 \rightarrow L$	0.1895
S ₅	286.6	4.326		H-1 → L+2	0.0153
				$H \rightarrow L+2$	0.5661
				$H \rightarrow L+3$	0.0376
			0.1025	H-3 → L	0.5143
				$H-2 \rightarrow L$	0.1905
				$H-2 \rightarrow L+3$	0.0155
				$H-1 \rightarrow L$	0.0302
S ₆	278.7	4.449		$H-1 \rightarrow L+3$	0.0179
				$H \rightarrow L+2$	0.0242
				$H \rightarrow L+3$	0.0744
				$H \rightarrow L+4$	0.0642
				$H \rightarrow L+6$	0.0380
				$H-3 \rightarrow L$	0.0174
				$H-2 \rightarrow L$	0.0490
S ₇	269.9	4.593	0.1060	$H-1 \rightarrow L+4$	0.0194
				$H \rightarrow L+4$	0.8372
				$H \rightarrow L+5$	0.0108
				$H-3 \rightarrow L$	0.1181
				$H-2 \rightarrow L$	0.0178
S	264	4 696	0.0020	H-1 → L+1	0.0119
38	204	+.050	0.0020	H → L+3	0.7404
				H → L+5	0.0488
				H → L+6	0.0223
				$H-1 \rightarrow L+5$	0.0358
S ₉	260.9	4.752	0.0012	H → L+3	0.0481
				$H \rightarrow L+5$	0.8518

				H-4 → L+2	0.0105
				H-2 → L+1	0.0841
c	252	4 000	0 1100	H-1 → L+1	0.8296
S ₁₀	253	4.900	0.1188	$H \rightarrow L+1$	0.0182
				$H \rightarrow L+3$	0.0124
				$H \rightarrow L+4$	0.0111
				H-1 → L	0.0982
T ₁	451.5	2.746	-	H→L	0.8505
				$H \rightarrow L+7$	0.0111
				H-8 → L+7	0.0170
				H-3 → L	0.0827
				H-3 → L+3	0.0136
				$H-2 \rightarrow L$	0.4944
T ₂	368.8	3.361	-	H-2 → L+6	0.0126
				$H-1 \rightarrow L$	0.2325
				H→L	0.0562
				$H \rightarrow L+6$	0.0119
				$H \rightarrow L+7$	0.0152
				$H-6 \rightarrow L+5$	0.0125
				H-5 → L+2	0.0479
				H-5 → L+5	0.0102
				$H-4 \rightarrow L+4$	0.0364
				H-2 → L+1	0.0197
T ₃	339.1	3.656	-	H-1 → L+1	0.1910
				H-1 → L+2	0.0118
				H-1 → L+4	0.0118
				$H \rightarrow L+1$	0.5257
				$H \rightarrow L+2$	0.0288
				$H \rightarrow L+4$	0.0161
				H-10 → L+3	0.0133
				$H-8 \rightarrow L$	0.0176
				H-3 → L	0.5935
				H-3 → L+3	0.0663
T ₄	334.1	3.711	-	H-3 → L+7	0.0309
				H-2 → L	0.1244
				H-2 → L+6	0.0190
				$H \rightarrow L+2$	0.0110
				$H \rightarrow L+6$	0.0425
				H-6 → L+2	0.0245
				H-6 → L+4	0.0163
				H-5 → L+1	0.0534
				H-5 → L+5	0.0182
				H-4 → L+1	0.0496
				H-4 → L+5	0.0117
				H-3 → L	0.0529
				H-2 → L	0.0103
T ₅	324.3	3.823	-	$H-2 \rightarrow L+6$	0.0222
				H-1→L	0.0311
				$H-1 \rightarrow L+2$	0.0863
				H-1 → L+3	0.0104
				$H-1 \rightarrow L+4$	0.0153
				$H \rightarrow L+1$	0.0432
				$H \rightarrow L+2$	0.3006
				$H \rightarrow L+4$	0.0850
				$H \rightarrow L+6$	0.0558
				H-8 → L	0.0133
Te	317.7	3.902	-	$H-6 \rightarrow L+2$	0.0189
		0.002	-	H-6 → L+4	0.0131
				H-5 → L+1	0.0340

				H-5 → L+5	0.0114
				H-4 → L+1	0.0365
				H-3 → L	0.0680
				$H-2 \rightarrow L+2$	0.0209
				$H-2 \rightarrow L+4$	0.0144
				$H-2 \rightarrow 1+6$	0.0518
				H-1 → I	0.0956
				$H_{-1} \rightarrow I_{+2}$	0.0541
				$H_1 \rightarrow I_{+1}$	0.0204
					0.0204
					0.0130
					0.1014
					0.2072
					0.0111
				$H-7 \rightarrow L$	0.0246
				$H-3 \rightarrow L$	0.0175
				$H-3 \rightarrow L+3$	0.0110
				$H-2 \rightarrow L$	0.2540
T ₇	310.6	3,992	-	H-1 → L	0.4728
.,				H-1 → L+7	0.0109
				H→L	0.0534
				$H \rightarrow L+3$	0.0143
				$H \rightarrow L+6$	0.0451
				$H \rightarrow L+7$	0.0136
				H-10 → L	0.0165
		4.155	-	H-10 → L+3	0.0158
				H-8 → L	0.0434
				H-8 → L+3	0.0234
				H-3 → L	0.0570
				H-3 → L+3	0.2745
				H-3 → L+6	0.0148
				H-2 → L	0.0117
T ₈	298.4			$H-2 \rightarrow L+3$	0.0916
				$H_{-2} \rightarrow 1+7$	0.0326
				$H-1 \rightarrow I+3$	0.0463
				$H_{-1} \rightarrow I_{+7}$	0.0305
				$H \rightarrow 1+2$	0.0191
				$H \rightarrow 1+3$	0.0730
				$H \rightarrow 1+6$	0.0730
					0.1072
					0.0305
					0.0230
					0.0545
					0.0400
					0.0190
					0.0950
					0.0120
				$ H-5 \rightarrow L+2$	0.1085
Τ ₉	294.4	4.212	-	H-5 → L+5	0.0141
				$ H-4 \rightarrow L+1$	0.0554
				$H-4 \rightarrow L+4$	0.0868
				$H-2 \rightarrow L+1$	0.0168
				H-2 → L+3	0.0160
				H-1 → L+1	0.0259
				H → L+1	0.2259
				H → L+2	0.0688
				$H \rightarrow L+6$	0.0270
				$H-8 \rightarrow L$	0.0239
_	201 5	4 252		H-7 → L+4	0.0156
10	291.5	4.203	-	H-6 → L+5	0.0242
				$H-5 \rightarrow L+2$	0.0182

Figure S8 –Overlaid solid-state UV-Vis spectrum and calculated TD-DFT transitions for **1**, red bars – TD-PBEO, black bars – TD-B2PLYP levels

Table S6 – Main excitation transitions of 2 in the ground state (TD-B2PLYP for singlets and TDA
B2PLYP for triplets). H – HOMO, L – LUMO.

State	Wavelength, nm	Energy, eV	Oscillator strength	Transition	Contribution
S ₁	350.8	3.534	0.5581	H-1 → L	0.1162
				H-1 → L+1	0.1937
				H→L	0.5680
				$H \rightarrow L+1$	0.0494
S ₂	345.8	3.586	0.1478	H-1 → L	0.1845
				H-1 → L+1	0.1868
				H→L	0.0717
				$H \rightarrow L+1$	0.4893
S ₃	295.4	4.197	0.0237	$H-5 \rightarrow L$	0.0128
				H-4 → L+1	0.1182
				H-3 → L	0.3343
				$H-2 \rightarrow L$	0.0808
				H-2 → L+1	0.1682
				$H-1 \rightarrow L$	0.0639
				H-1 → L+2	0.0216
				H-1 → L+6	0.0142
				$H \rightarrow L+1$	0.0289
				$H \rightarrow L+7$	0.0112

S ₄	293.5	4.224	0.1877	H-5 → L	0.0208
				H-4 → L	0.0396
				$H-4 \rightarrow L+1$	0.1202
				H-3 → I	0 1354
				$H_{-3} \rightarrow I_{+1}$	0 1397
					0.1473
					0.1475
					0.0924
				$H^{-1} \rightarrow L^{+1}$	0.0552
				$ H-1 \rightarrow L+/$	0.0125
				$H \rightarrow L+1$	0.0294
				$H \rightarrow L+2$	0.0477
				$H \rightarrow L+6$	0.0231
S ₅	299.9	4.135	0.0354	H-6 → L	0.0144
				H-6 → L+1	0.2150
				$H-6 \rightarrow L+8$	0.0154
				H-5 → L	0.0262
				H-4 → L+3	0.0120
				H-3 → L+1	0.0321
				$H-2 \rightarrow I+1$	0.0153
				$H_{-2} \rightarrow I_{+3}$	0.0150
				$H_{-1} \rightarrow I$	0.0261
				$H_{-1} \rightarrow I_{+1}$	0.0201
					0.2723
					0.0302
					0.0794
				$H \rightarrow L+1$	0.1301
				$H \rightarrow L+2$	0.0256
				$H \rightarrow L+3$	0.0149
S ₆	292.5	4.238	0.0521	H-6 → L	0.0109
				H-6 → L+1	0.0863
				$H-5 \rightarrow L$	0.2954
				H-5 → L+1	0.0311
				H-5 → L+9	0.0166
				H-4 → L	0.0102
				$H-3 \rightarrow L+4$	0.0181
				H-2 → I	0.0261
				$H_2 \rightarrow I_{\pm 4}$	0.0162
					0.0102
					0.1372
					0.0121
					0.0287
				H → L	0.0663
				$ H \rightarrow L+1$	0.0334
				H → L+4	0.0340
S ₇	292.6	4.237	0.0040	H-6 → L+1	0.0491
				H-5 → L	0.2747
				H-5 → L+1	0.0145
				H-5 → L+9	0.0136
				H-4 → L	0.0100
				H-3 → L	0.0641
				H-3 → L+4	0.0192
				H-1 → L	0.1816
				$H-1 \rightarrow L+1$	0.0213
				$H-1 \rightarrow I+4$	0.0139
				$ H_{-1} \rightarrow +7$	0.0102
					0.0102
					0.1110
				$ \Pi \rightarrow L+2$	0.0363
				$ H \rightarrow L+4$	0.0126
				$H \rightarrow L+6$	0.0149
				$H \rightarrow L+7$	0.0273
S ₈	293.3	4.227	0.0125	H-6 → L	0.0182

				H-6 → L+1	0.2395
				$H-6 \rightarrow L+8$	0.0133
				H-4 → L+1	0.0181
				H-4 → L+3	0.0145
				$H-3 \rightarrow L$	0.0135
				H-3 → L+1	0.0591
				$H-2 \rightarrow L+1$	0.0258
				H-2 → L+3	0.0106
				H-1 → L	0.0937
				H-1 → L+1	0.1466
				H-1 → L+3	0.0215
				$H-1 \rightarrow L+6$	0.0165
				$H \rightarrow I+1$	0.1940
				$H \rightarrow 1+3$	0.0134
				$H \rightarrow I + 6$	0.0180
Sa	275 1	4 507	0 1048	H-3 → I	0.0109
Jg	273.1	4.507	0.1040	$H-3 \rightarrow I+1$	0.0341
				$H_{-2} \rightarrow I$	0.0401
					0.0710
				$ H_2 \rightarrow L^{+1}$	0.0715
				$ H_2 \rightarrow L_2$	0.0032
					0.0121
					0.0300
				$ 1^{-1} \rightarrow 1^{+1}$	0.0222
					0.0180
					0.0440
					0.4422
					0.0281
	200.4	4 4 2 1	0.0120	$H \rightarrow L+/$	0.0141
S ₁₀	280.4	4.421	0.0139	$H-12 \rightarrow L+1$	0.0796
				$H-11 \rightarrow L+1$	0.0129
				$H-10 \rightarrow L+1$	0.0166
				$H-9 \rightarrow L+1$	0.0606
				$H-b \rightarrow L+1$	0.0169
				$H-4 \rightarrow L$	0.0144
				$H-4 \rightarrow L+1$	0.2884
				$H-2 \rightarrow L+1$	0.3034
				$H-2 \rightarrow L+2$	0.0175
-	445.0			$H \rightarrow L+2$	0.0465
	415.8	2.982	-	$H-8 \rightarrow L+9$	0.0184
				$H-5 \rightarrow L$	0.0217
				$ H-5 \rightarrow L+4$	0.0164
				$ \Pi - 3 \rightarrow L$	0.0273
				$ H-2 \rightarrow L$	0.0521
				$ H-1 \rightarrow L$	0.2861
				$ H-1 \rightarrow L+1$	0.0250
				H → L	0.3779
				$ H \rightarrow L+1$	0.0316
-	400.6	2.024		$H \rightarrow L+7$	0.0104
12	408.6	3.034	-	$H-10 \rightarrow L+8$	0.0125
				$ H-6 \rightarrow L+1$	0.0213
				$H-6 \rightarrow L+3$	0.0165
				$ H-4 \rightarrow L+1 $	0.0264
				$ H-3 \rightarrow L+1$	0.0124
				$ H-2 \rightarrow L+1$	0.0728
				$ H-1 \rightarrow L$	0.0347
				$ H-1 \rightarrow L+1$	0.3696
				H→L	0.0226
				H → L+1	0.2588
T ₃	342.9	3.616	-	H-6 → L+1	0.0411

				H-6 → L+3	0.0297
				$H-4 \rightarrow L$	0.0151
				H-4 → L+1	0.2366
				$H-4 \rightarrow L+6$	0.0108
				H-3 → L+1	0.0974
				H-2 → L+1	0.1039
				H-1 → L+1	0.0342
				H-1 → L+8	0.0273
				$H \rightarrow L+1$	0.1574
				$H \rightarrow L+6$	0.0115
				$H \rightarrow L+8$	0.0253
T	340	3.646	-	H-8 → L+9	0.0128
				H-5 → L	0.0570
				$H-5 \rightarrow L+4$	0.0490
				$H-4 \rightarrow L$	0.0424
				H-3 → L	0.3422
				$H-3 \rightarrow I+1$	0.0296
				$H-3 \rightarrow 1+4$	0.0108
				$H_{-2} \rightarrow I$	0.0951
				$H_{-1} \rightarrow I$	0.0199
				$H_1 \rightarrow I_{\pm 0}$	0.0135
					0.0278
					0.1225
	221.1	2 745			0.0387
15	551.1	5.745	-		0.0151
					0.0407
					0.0114
				$H-9 \rightarrow L+0$	0.0131
				$H-7 \rightarrow L+5$	0.2247
				$H-6 \rightarrow L+1$	0.0112
				$H-6 \rightarrow L+3$	0.0162
				$H-4 \rightarrow L+2$	0.0924
				$H-4 \rightarrow L+3$	0.0205
				$H-4 \rightarrow L+6$	0.0448
				$H-3 \rightarrow L+2$	0.0122
				$H-2 \rightarrow L+2$	0.2102
				H-2 → L+3	0.0354
				$H-2 \rightarrow L+6$	0.0163
				$H \rightarrow L+2$	0.0527
T ₆	327.7	3.784	-	H-14 → L+3	0.0162
				H-10 → L+1	0.0443
				H-9 → L+1	0.0271
				H-8 → L+1	0.0244
				H-7 → L+5	0.0292
				$H-6 \rightarrow L$	0.0132
				H-6 → L+1	0.1078
				$H-6 \rightarrow L+2$	0.0210
				$H-6 \rightarrow L+3$	0.1131
				H-6 → L+8	0.0196
				H-4 → L+2	0.0539
				H-4 → L+6	0.0301
				H-4 → L+8	0.0104
				H-4 → L+11	0.0134
				H-3 → L+6	0.0225
				H-2 → L+6	0.0241
				$H-2 \rightarrow L+8$	0.0160
				$H-1 \rightarrow L+2$	0.0146
				$H-1 \rightarrow I+6$	0.0257
				$H-1 \rightarrow I+8$	0.0461
				$H \rightarrow 1+2$	0.0152
		1		11 / 212	0.0102

				$H \rightarrow L+6$	0.0482
				$H \rightarrow L+8$	0.0238
				$H \rightarrow L+11$	0.0113
T-7	325.6	3.808	-	H-13 → I+4	0.0208
				H-10 → I	0.0318
				H-8 → I	0.0725
				$H_{-5} \rightarrow I$	0 1189
				$H_{-5} \rightarrow I_{+1}$	0.0112
					0.0112
					0.1475
					0.0201
					0.0505
				$H-3 \rightarrow L+2$	0.0141
				$H-3 \rightarrow L+7$	0.0612
				$H-3 \rightarrow L+9$	0.0402
				$H-2 \rightarrow L$	0.0123
				$H-2 \rightarrow L+9$	0.0207
				H-1 → L+2	0.0108
				H-1 → L+7	0.0309
				H-1 → L+9	0.0127
				$H \rightarrow L+4$	0.0115
				$H \rightarrow L+7$	0.0597
				$H \rightarrow L+9$	0.0102
T ₈	299.5	4.140	-	$H-6 \rightarrow L$	0.0151
				H-6 → L+1	0.1551
				H-6 → L+3	0.0657
				$H-6 \rightarrow L+8$	0.0255
				$H-5 \rightarrow L$	0.0385
				H-4 → L	0.0112
				$H-4 \rightarrow L+1$	0.0730
				$H-4 \rightarrow 1+2$	0.0119
				$H_{-4} \rightarrow 1+6$	0.0214
				$H_{-3} \rightarrow I_{+1}$	0.0557
				$H_{-3} \rightarrow 1+7$	0.0115
					0.0201
					0.0201
				$H_2 \rightarrow L_1$ $H_1 \rightarrow L_1$	0.0328
					0.0102
					0.0170
					0.0502
				$H-1 \rightarrow L+7$	0.0193
				$H-1 \rightarrow L+8$	0.0113
					0.0180
				$H \rightarrow L+2$	0.0725
				$H \rightarrow L+b$	0.0834
				$H \rightarrow L+8$	0.0130
19	298.4	4.154	-	$H-6 \rightarrow L+1$	0.0264
				$H-6 \rightarrow L+3$	0.0106
				$H-5 \rightarrow L$	0.1940
				$H-5 \rightarrow L+1$	0.0227
				H-5 → L+4	0.0379
				H-5 → L+9	0.0205
				$H-4 \rightarrow L+1$	0.0133
				H-3 → L	0.1015
				H-3 → L+2	0.0130
				H-3 → L+6	0.0139
				H-3 → L+7	0.0509
				H-2 → L	0.0223
				H-2 → L+1	0.0182
				$H-1 \rightarrow L$	0.0115
				H-1 → L+2	0.0412

				H-1 → L+4	0.0165
				H-1 → L+6	0.0277
				H-1 → L+7	0.0386
				$H \rightarrow L+4$	0.0275
				$H \rightarrow L+7$	0.1072
				$H \rightarrow L+11$	0.0171
T ₁₀	288.8	4.293	-	H-13 → L	0.0256
				H-8 → L	0.0101
				H-8 → L+4	0.0218
				H-6 → L+1	0.0173
				$H-5 \rightarrow L$	0.2295
				H-5 → L+1	0.0170
				H-5 → L+4	0.1627
				H-5 → L+7	0.0128
				H-3 → L+4	0.0731
				H-3 → L+9	0.0148
				H-2 → L+4	0.0266
				H-1 → L+4	0.0275
				H-1 → L+7	0.0265
				H-1 → L+9	0.0113
				$H \rightarrow L+4$	0.0216
				H → L+6	0.0106
				$H \rightarrow 1+7$	0.0451

Figure S9 – Overlaid solid-state UV-Vis spectrum and calculated TD-DFT transitions for **2**, red bars – TD-PBEO, black bars – TD-B2PLYP levels.

Table S7 – Main excitation transitions of **3** in the ground state (TD-PBE0 for singlets and TDA-PBE0 for triplets). H - HOMO, L - LUMO.

State	Wavelength, nm	Energy, eV	Oscillator strength	Transition	Contribution
c	262.1 2.424	0 1125	H-2 → L	0.0960	
S_1 362.1 3.	5.424	0.1135	H-1 → L	0.2208	

				H→L	0.6086
				$H \rightarrow L+1$	0.0429
				H-1 → L	0.0213
				$H-1 \rightarrow L+1$	0.0304
S ₂	353.5	3.507	0.1585	H→L	0.0239
				$H \rightarrow L_{+}1$	0.8476
				$H \rightarrow L+2$	0.0285
6	242 5	2.000	0.0272	$H \rightarrow L+1$	0.0450
S ₃	343.5	3.609	0.0273	$H \rightarrow L+2$	0.9173
				H-2 → L	0.0798
S ₄	331.8	3.737	0.0295	$H-1 \rightarrow L$	0.5457
				H→L	0.3469
				$H-4 \rightarrow L$	0.0157
				$H-2 \rightarrow L$	0.2879
S ₅	325	3.815	0.0407	$H-2 \rightarrow L+1$	0.2405
				$H-1 \rightarrow L$	0.0502
				$H-1 \rightarrow L+1$	0.3445
				$H-4 \rightarrow L$	0.0350
				$H-3 \rightarrow L$	0.0113
				$H-2 \rightarrow L$	0.4602
S ₆	322.8	3.841	0.0468	$H-2 \rightarrow L+1$	0.1198
- 0				$H-2 \rightarrow L+2$	0.0112
				$H-1 \rightarrow L$	0.0970
				$H-1 \rightarrow I+1$	0.2293
				$H-2 \rightarrow I+1$	0.2534
				$H_2 \rightarrow I_{+2}$	0.0101
S-	315 3	3 933	0.0685	$H_{-1} \rightarrow I_{+1}$	0 1868
57	515.5	3.555	0.0005	$H_{-1} \rightarrow I_{+2}$	0 5053
					0.0000
					0.0132
					0.1323
					0.0242
S ₈	313.5	3.955	0.1290	$H_2 \rightarrow L_1$	0.1780
					0.4044
					0.0007
					0.1323
					0.0131
S ₉	306.2	4.049	0.0219		0.7079
				Π -3 \rightarrow L+2	0.0200
					0.1885
				$H-9 \rightarrow L$	0.0119
				$ \Pi - / \rightarrow L$	0.0135
					0.0422
S ₁₀	302.9	4.093	0.0030	$ \Pi - 5 \rightarrow L$	0.0231
				$ \Pi - 4 \rightarrow L$	0.5415
				$ H-3 \rightarrow L$	0.2405
				$ H-2 \rightarrow L$	0.0469
				$ H-1 \rightarrow L$	0.0360
				$ H-5 \rightarrow L+1$	0.0154
				$H-2 \rightarrow L+1$	0.0148
T ₁	433.2	2.862	-	$H-1 \rightarrow L+1$	0.0785
				$H-1 \rightarrow L+2$	0.0596
				$H \rightarrow L+1$	0.5032
				$H \rightarrow L+2$	0.2326
				H-7 → L	0.0506
T	430 1	2 882	-	H-2 → L	0.2705
'2		2.002		H-1 → L	0.3381
				H→L	0.2558
	110	2.066		$H-6 \rightarrow L+1$	0.0113
13	410	2.900	-	H-6 → L+2	0.0134

				H-3 → L+1	0.0281
				H-3 → L+2	0.0248
				$H-2 \rightarrow L+1$	0.1853
				$H-2 \rightarrow I+2$	0.2336
				$H_{-1} \rightarrow I_{+1}$	0 1515
				$H_{-1} \rightarrow I_{+2}$	0.1396
				$ H \rightarrow +1$	0.1350
					0.0230
					0.0718
				$H-9 \rightarrow L$	0.1024
				$H-8 \rightarrow L+4$	0.0125
-		0.070		$H-7 \rightarrow L$	0.5089
T ₄	367.6	3.372	-	$H-4 \rightarrow L$	0.0356
				$H-2 \rightarrow L$	0.0133
				$H-1 \rightarrow L$	0.0457
				H→L	0.0833
				H-6 → L+1	0.0122
				H-6 → L+2	0.0132
				H-5 → L+1	0.2846
				$H-5 \rightarrow L+2$	0.1308
-		2 202		$H-4 \rightarrow L+1$	0.1607
15	300.5	3.383	-	$H-4 \rightarrow L+2$	0.0491
				$H-3 \rightarrow L+1$	0.0317
				$H-1 \rightarrow L+2$	0.0138
				$H \rightarrow L+1$	0.0982
				$H \rightarrow L+13$	0.0182
				$H-5 \rightarrow I+1$	0.0438
				$H-4 \rightarrow 1+2$	0.0286
				$H_3 \rightarrow I_{\pm 1}$	0.0200
т	255 5	2 / 9 9			0.3223
16	555.5	5.400			0.3377
					0.0342
					0.0545
					0.0225
				$H-5 \rightarrow L+2$	0.0147
				$H-4 \rightarrow L+2$	0.0187
				$H-3 \rightarrow L+1$	0.0455
				$H-3 \rightarrow L+2$	0.0208
T ₇	348.3	3.559	-	$H-1 \rightarrow L+1$	0.0192
				H-1 → L+2	0.0310
				$H \rightarrow L+1$	0.2144
				$H \rightarrow L+2$	0.5165
				$H \rightarrow L+3$	0.0103
				H-6 → L+1	0.2373
				H-6 → L+2	0.1258
				H-6 → L+15	0.0102
				H-5 → L+1	0.0699
				$H-5 \rightarrow L+2$	0.0230
				$H-4 \rightarrow L+1$	0.0669
T ₈	342.9	3.616	-	$H-4 \rightarrow L+2$	0.0319
				H-3 → L+1	0.0189
				H-2 → L+1	0.0870
				$H-2 \rightarrow L+2$	0.0531
				$H-1 \rightarrow L+1$	0.0599
				$H-1 \rightarrow L+2$	0.0445
				$H \rightarrow L+2$	0.0101
<u> </u>				H-19 → I	0.0168
				$H-9 \rightarrow I$	0.0382
т.	337.2	3 677	_	$H_{-9} \rightarrow I_{+4}$	0.0115
19	557.2	5.077		$ H-8 \rightarrow $	0 1841
					0.0545
				11 ⁻ 2 / L	0.0040

				$H-2 \rightarrow L+4$	0.0142
				H-2 → L+6	0.0150
				$H-1 \rightarrow L$	0.0424
				H-1 → L+1	0.0332
				H-1 → L+4	0.0374
				H-1 → L+6	0.0206
				$H \rightarrow L$	0.2189
				$H \rightarrow L+3$	0.0341
				$H \rightarrow L+4$	0.0183
				$H \rightarrow L+6$	0.0220
				H-10 → L	0.0160
				$H-9 \rightarrow L$	0.0470
				$H-8 \rightarrow L$	0.0771
-	225.2	2 600		$H-4 \rightarrow L$	0.0108
I 10	335.2	5.2 3.698	-	$H-1 \rightarrow L$	0.2438
				H-1 → L+4	0.0140
				H-1 → L+6	0.0112
				H→L	0.3946

Figure S10 – Overlaid solid-state UV-Vis spectrum and calculated TD-DFT transitions for **3** (TD-PBE0 level).

Figure S11 – Frontier orbitals of **3** (PBE0/def2-TZVP(-f), isovalue = 0.03)

Experimental photophysical properties

Table S8. CIE x,y chromacity coordinates of compounds **1–3** depending on the excitation wavelength λ_{Ex} , nm.

Figure S12. Excitation spectra of solid compounds 1–3 for the emission at 450 and 550 nm

Figure S13. Decay kinetics data for solid compounds 1-3 at λ_{Em} of 550 nm. Blue dots – experiment, red line – fitting.

Figure S14. Steady-state (black line) and delayed (300 μ s delay, blue line) emission spectra for solid compound **3**.

DFT calculation of relaxation processes

	H H N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	S N N N N N N N N N N N N N N N N N N N	
	CCNP, deg	NCCC, deg	CNPC, deg	CNP, deg	NPC, deg
¹ LE	2.53	10.61	76.62, 179.12	129.16	97.08, 102.76
¹ TICT	66.60	8.98	88.78, 149.32	117.19	109.62, 111.85
³ LE (T ₁)	11.74	1.35	86.02, 170.25	127.59	95.29, 102.70
³ TICT (T ₁)	56.86	3.66	42.80, 157.19	121.60	102.14, 111.11
³ LE (T ₂)	2.93	0.78	92.77, 164.53	128.33	96.35, 102.06
³ TICT (T ₂)	50.85	6.54	62.50, 169.74	120.00	98.68, 107.24

Table S9 - Selected geometry parameters for optimized excited states of **1**. LE – locally excited state, TICT – "twisted" intramolecular charge transfer state.

Table S10 - Selected geometry parameters for optimized excited states of **2**. LE – locally excited state, TICT – "twisted" intramolecular charge transfer state.

	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	S S S S S S S S S S S S S S S S S S S	N N N N N N N N N N N N N N N N N N N
	CCNP, deg	NCCC, deg	CNPC, deg	CNP, deg	NPC, deg
¹ LE	1.13, 21.75	0.65, 1.01	72.93, 163.97	126.04, 132.36	98.50, 101.83
¹ TICT	46.22, 57.09	2.14, 6.81	102.17, 160.76	119.75, 120.12	104.85, 110.36
³ LE (T ₁)	27.76, 28.74	0.81, 18.86	68.95, 178.32	125.99 <i>,</i> 130.00	95.93, 106.16
³ TICT (T ₁)	35.26, 56.86	5.79, 10.89	79.17, 163.19	120.16, 123.68	96.55, 103.53

Table S11 - Selected geometry parameters for optimized excited states of **3**. LE – locally excited state, TICT – "twisted" intramolecular charge transfer state.

	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
	CCNP, deg	NCCC, deg	CNPC, deg	CNP, deg	NPC, deg
¹ LE	0.65,	4.58,	39.77, 49.68,	120.85,	97.94, 98.74,

	4.63, 74.70,	2.64,	139.07, 142.25	123.18,	102.82, 103.23
	86.81	161.30		126.25,	
				126.45	
¹ TICT	17.44, 62.58,	3.71, 7.48,	28.97, 44.60,	118.34,	98.81, 99.26,
	78.07, 81.86	172.78	155.73, 163.65	123.70,	105.12, 108.22,
				125.57,	
				126.01	
³ LE (T ₁)	2.38, 3.45,	4.16, 18.57,	33.90, 62.09,	119.05,	95.78, 100.04,
	81.60, 82.67,	179.91	125.31, 133.31	124.49,	101.36, 105.18
				126.48,	
				126.78	
³ TICT (T ₁)	22.83, 32.52,	12.34, 23.99,	39.47, 42.93,	120.85,	96.26, 98.50,
	75.70, 83.31	176.13,	146.95, 171.03	122.75,	101.90, 102.05
				123.09,	
				125.13	

Table S12 – 0-0 transition wavelengths and energies, calculated by B2PLYP for $\mathbf{1}$ and $\mathbf{2}$ and by PBE0 for $\mathbf{3}$ over equilibrium excited state geometries.

State	S	1	T ₁		T ₂	
character						
			Compound	1		
LE	431.5 nm	2.874 eV	531.2 nm	2.334 eV	425.5 nm	2.914 eV
			(546.9) ¹	(2.267) ¹		
TICT	701.9 nm	1.767 eV	497.3 nm	2.493 eV	401.0 nm	3.092 eV
			Compound	2		
LE	393.0 nm	3.155 eV	547.8 nm	2.263 eV	_2	_2
TICT	697.1 nm	1.779 eV	547.4 nm	2.265 eV	_2	_2
			Compound	3		
LE	408.7 nm	3.034 eV	557.7 nm	2.223 eV	_2	_2
TICT	700.8 nm	1.769 eV	609.7 ¹ nm	2.034 ¹ eV	2	_2

¹Geometry optimized by UPBE0/def2-TZVP(-f)

²No data

Spin-orbital coupling matrix coefficients

Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹
$S_0 \rightarrow T_1$	2.62	$S_7 \rightarrow T_4$	2.05	$S_8 \rightarrow T_7$	4.18
$S_2 \rightarrow T_1$	2.90	$S_0 \rightarrow T_5$	11.80	$S_9 \rightarrow T_7$	4.04
$S_3 \rightarrow T_1$	5.31	$S_1 \rightarrow T_5$	1.42	$S_{10} \rightarrow T_7$	2.38
$S_6 \rightarrow T_1$	1.25	$S_2 \rightarrow T_5$	4.07	$S_0 \rightarrow T_8$	3.36
$S_7 \rightarrow T_1$	1.71	$S_3 \rightarrow T_5$	3.39	$S_1 \rightarrow T_8$	1.59
$S_8 \rightarrow T_1$	1.41	$S_4 \rightarrow T_5$	2.69	$S_2 \rightarrow T_8$	2.56
$S_9 \rightarrow T_1$	1.37	$S_5 \rightarrow T_5$	1.47	$S_3 \rightarrow T_8$	1.72
$S_0 \rightarrow T_2$	2.04	$S_9 \rightarrow T_5$	1.34	$S_7 \rightarrow T_8$	1.01
$S_1 \rightarrow T_2$	1.16	$S_{10} \rightarrow T_5$	1.69	$S_8 \rightarrow T_8$	2.58
$S_3 \rightarrow T_2$	1.28	$S_0 \rightarrow T_6$	8.34	$S_0 \rightarrow T_9$	12.22
$S_0 \rightarrow T_3$	32.59	$S_1 \rightarrow T_6$	2.16	$S_1 \rightarrow T_9$	1.17
$S_1 \rightarrow T_3$	2.32	$S_2 \rightarrow T_6$	2.62	$S_2 \rightarrow T_9$	2.05
$S_2 \rightarrow T_3$	2.36	$S_3 \rightarrow T_6$	2.77	$S_4 \rightarrow T_9$	2.90
$S_4 \rightarrow T_3$	3.44	$S_4 \rightarrow T_6$	1.51	$S_6 \rightarrow T_9$	1.01
$S_6 \rightarrow T_3$	1.35	$S_5 \rightarrow T_6$	3.47	S ₈ →T ₉	3.12
$S_7 \rightarrow T_3$	1.56	$S_8 \rightarrow T_6$	1.62	$S_9 \rightarrow T_9$	1.26
$S_8 \rightarrow T_3$	4.51	$S_9 \rightarrow T_6$	1.20	$S_{10} \rightarrow T_9$	3.86
$S_9 \rightarrow T_3$	1.58	$S_0 \rightarrow T_7$	18.67	$S_0 \rightarrow T_{10}$	15.95
$S_{10} \rightarrow T_3$	3.05	$S_1 \rightarrow T_7$	7.29	$S_1 \rightarrow T_{10}$	1.29
$S_0 \rightarrow T_4$	3.51	$S_3 \rightarrow T_7$	5.07	$S_2 \rightarrow T_{10}$	3.17
$S_1 \rightarrow T_4$	2.24	$S_4 \rightarrow T_7$	4.25	$S_4 \rightarrow T_{10}$	1.54
$S_2 \rightarrow T_4$	4.19	$S_5 \rightarrow T_7$	10.24	$S_6 \rightarrow T_{10}$	1.30
$S_3 \rightarrow T_4$	8.37	$S_6 \rightarrow T_7$	2.91	$S_8 \rightarrow T_{10}$	1.12
$S_6 \rightarrow T_4$	1.95				

Table S13 - Selected SOCME values for 1	(TDA-PBEO, RI-SOMF()	1x))
---	----------------------	------

Table S14 - Selected SOCME values for 2 (TDA-PBE0, RI-SOMF(1x))

Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹
$S_0 \rightarrow T_1$	1.56	$S_6 \rightarrow T_4$	3.09	$S_8 \rightarrow T_7$	1.61
$S_1 \rightarrow T_1$	1.12	$S_0 \rightarrow T_5$	11.95	$S_9 \rightarrow T_7$	1.00
$S_2 \rightarrow T_1$	2.17	$S_1 \rightarrow T_5$	1.91	$S_{10} \rightarrow T_7$	1.07
$S_4 \rightarrow T_1$	3.85	$S_2 \rightarrow T_5$	1.42	$S_0 \rightarrow T_8$	11.98
$S_5 \rightarrow T_1$	1.42	$S_3 \rightarrow T_5$	1.09	$S_1 \rightarrow T_8$	2.20
$S_6 \rightarrow T_1$	2.44	$S_4 \rightarrow T_5$	3.63	$S_4 \rightarrow T_8$	1.29
$S_0 \rightarrow T_2$	1.47	S₅→T₅	5.40	S₅→T ₈	4.09
$S_1 \rightarrow T_2$	1.23	$S_6 \rightarrow T_5$	3.11	$S_6 \rightarrow T_8$	1.91
$S_3 \rightarrow T_2$	3.50	$S_7 \rightarrow T_5$	1.17	$S_8 \rightarrow T_8$	3.17
$S_5 \rightarrow T_2$	8.03	$S_0 \rightarrow T_6$	6.33	$S_0 \rightarrow T_9$	10.12
$S_6 \rightarrow T_2$	3.52	$S_2 \rightarrow T_6$	1.79	$S_1 \rightarrow T_9$	1.20
$S_7 \rightarrow T_2$	1.27	$S_3 \rightarrow T_6$	1.05	$S_2 \rightarrow T_9$	2.51
$S_8 \rightarrow T_2$	2.89	$S_4 \rightarrow T_6$	2.52	$S_4 \rightarrow T_9$	1.17
$S_{10} \rightarrow T_2$	2.00	$S_5 \rightarrow T_6$	5.20	$S_5 \rightarrow T_9$	1.06

$S_0 \rightarrow T_3$	3.56	$S_6 \rightarrow T_6$	1.14	$S_6 \rightarrow T_9$	3.38
$S_2 \rightarrow T_3$	1.18	$S_8 \rightarrow T_6$	1.54	$S_8 \rightarrow T_9$	1.47
$S_3 \rightarrow T_3$	2.20	$S_0 \rightarrow T_7$	10.84	$S_9 \rightarrow T_9$	2.21
$S_5 \rightarrow T_3$	1.61	$S_1 \rightarrow T_7$	4.45	$S_0 \rightarrow T_{10}$	6.51
$S_8 \rightarrow T_3$	1.15	$S_3 \rightarrow T_7$	1.91	$S_2 \rightarrow T_{10}$	2.79
$S_9 \rightarrow T_3$	2.37	$S_4 \rightarrow T_7$	1.07	$S_5 \rightarrow T_{10}$	3.86
$S_0 \rightarrow T_4$	3.04	$S_5 \rightarrow T_7$	5.65	$S_7 \rightarrow T_{10}$	1.21
$S_4 \rightarrow T_4$	1.68	$S_6 \rightarrow T_7$	6.99	$S_8 \rightarrow T_{10}$	1.34
$S_5 \rightarrow T_4$	1.40	$S_7 \rightarrow T_7$	2.51	$S_9 \rightarrow T_{10}$	1.37

Table S15 - Selected SOCME values for **3** (TDA-PBE0, RI-SOMF(1x))

Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹	Transition	SOC, cm ⁻¹
$S_5 \rightarrow T_1$	1.46	$S_6 \rightarrow T_4$	1.69	$S_5 \rightarrow T_8$	2.07
$S_6 \rightarrow T_1$	1.35	$S_{10} \rightarrow T_4$	1.74	$S_6 \rightarrow T_8$	2.04
$S_7 \rightarrow T_1$	1.80	$S_0 \rightarrow T_5$	1.56	$S_7 \rightarrow T_8$	1.79
$S_8 \rightarrow T_1$	1.53	$S_8 \rightarrow T_5$	1.37	$S_8 \rightarrow T_8$	1.41
$S_9 \rightarrow T_1$	4.06	$S_9 \rightarrow T_5$	1.07	$S_9 \rightarrow T_8$	3.79
$S_1 \rightarrow T_2$	1.19	$S_0 \rightarrow T_6$	1.73	$S_0 \rightarrow T_9$	2.26
$S_4 \rightarrow T_2$	3.08	$S_1 \rightarrow T_6$	1.19	$S_1 \rightarrow T_9$	1.70
$S_5 \rightarrow T_2$	3.38	$S_2 \rightarrow T_6$	4.25	$S_4 \rightarrow T_9$	1.41
$S_6 \rightarrow T_2$	2.94	$S_3 \rightarrow T_6$	3.35	$S_5 \rightarrow T_9$	2.78
$S_{10} \rightarrow T_2$	6.77	$S_6 \rightarrow T_6$	0.93	$S_6 \rightarrow T_9$	2.66
$S_0 \rightarrow T_3$	0.94	$S_7 \rightarrow T_6$	3.71	$S_{10} \rightarrow T_9$	5.63
$S_7 \rightarrow T_3$	2.13	$S_0 \rightarrow T_7$	3.13	$S_0 \rightarrow T_{10}$	4.01
$S_9 \rightarrow T_3$	1.16	$S_3 \rightarrow T_7$	1.04	$S_1 \rightarrow T_{10}$	3.97
$S_0 \rightarrow T_4$	4.31	$S_7 \rightarrow T_7$	2.88	$S_4 \rightarrow T_{10}$	1.29
$S_1 \rightarrow T_4$	2.08	$S_8 \rightarrow T_7$	4.84	$S_5 \rightarrow T_{10}$	2.23
$S_4 \rightarrow T_4$	0.93	$S_9 \rightarrow T_7$	2.16	$S_6 \rightarrow T_{10}$	1.54
$S_5 \rightarrow T_4$	2.01	$S_0 \rightarrow T_8$	1.17	$S_{10} \rightarrow T_{10}$	2.53

Single-crystal X-Ray diffraction data

,	i de la constante de		1
Identification code	1	2	3
Empirical formula	$C_{25}H_{19}N_2PS$	$C_{32}H_{23}N_4PS_2$	$C_{51}H_{36}N_6P_2S_3$
Formula weight	410.45	558.63	890.98
Temperature/K	150(2)	150(2)	150(2)
Space group	P2 ₁ /n	P2 ₁ /c	<i>P</i> –1
a/Å	9.1649(2)	11.8294(3)	11.3435(2)
b/Å	21.8384(4)	28.4993(8)	11.9478(2)
c/Å	10.3694(2)	7.9989(2)	17.8044(4)
α/°	90	90	77.3170(10)
β/°	101.1510(10)	100.2360(10)	88.6900(10)
γ/°	90	90	64.310(2)
Volume/ų	2036.22(7)	2653.75(12)	2114.26(8)
Z	4	4	2
$\rho_{calc}g/cm^3$	1.339	1.398	1.400
µ/mm⁻¹	0.252	0.292	0.297
F(000)	856.0	1160.0	924.0
Crystal size/mm ³	$0.13 \times 0.1 \times 0.07$	$0.15 \times 0.13 \times 0.08$	$0.16 \times 0.13 \times 0.1$
Crystal colour	pale yellow	colourless	pale yellow
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.73 to 57.428	4.518 to 55.788	4.178 to 52.764
Index ranges	-12 ≤ h ≤ 12, -29 ≤ k ≤	-15 ≤ h ≤ 15, -37 ≤ k ≤	-14 ≤ h ≤ 14, -14 ≤ k ≤
maex ranges	29, -14 ≤ l ≤ 14	37, -10 ≤ ≤ 10	14, -22 ≤ l ≤ 22
Reflections collected	24167	33626	25570
Independent reflections	5269 [R _{int} = 0.0326,	6348 [R _{int} = 0.0379,	8605 [R _{int} = 0.0330,
	$R_{sigma} = 0.0287$	$R_{sigma} = 0.0288$	$R_{sigma} = 0.0401$
Data/restraints/parameters	5269/1/265	6348/2/358	8605/178/647
Goodness-of-fit on F ²	1.033	1.039	1.040
Final R indexes [I>=2σ (I)]	R ₁ = 0.0367, wR ₂ = 0.0923	R ₁ = 0.0343, wR ₂ = 0.0843	R ₁ = 0.0387, wR ₂ = 0.0889
Final R indexes [all data]	R ₁ = 0.0460, wR ₂ = 0.0985	R ₁ = 0.0421, wR ₂ = 0.0898	R ₁ = 0.0497, wR ₂ = 0.0966
Largest diff. peak/hole / e Å ⁻³	0.32/-0.28	0.32/-0.29	0.33/-0.33

Table S16. Crystal data and structure refinement for compounds **1–3**.