Insertion free energy of PAP[5] water channels into block copolymer membranes

Supporting information

Ritwick Kali, Scott T. Milner

Figure SI 1: The autocorrelation function of a) radius of gyration (R_g) of the hydrophobic PB blocks in PB16PEO9 membrane. b) Cosine of angular tilt of the pore collar $(Cos(\Phi))$ with respect to the membrane normal in PB16PEO9 membrane. The time in which the autocorrelation functions decay to a value of e^{-1} gives a characteristic relaxation time τ .

Autocorrelation function A(k) of a time series $x_i = \{x_1, x_2, ..., x_n\}$ is given as

$$A(k) = \frac{\sum_{i=1}^{n-k} (x_i - \bar{x})(x_{i+k} - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(1)

where \bar{x} is the mean of the time series x_i

Figure SI 2: The radial distribution function of Na⁺ and carboxylate oxygens for a) different PB block lengths and b) different PEO block lengths, plotted out to the second counterion shell boundary (0.5 nm).

Figure SI 3: The radial distribution function of water oxygens and mid-phenylalanine carbonyl oxygen for a) different PB block lengths and b) different PEO block lengths, plotted out to the second hydration shell boundary (0.6 nm)