Supplementary information for

Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene thin films

Author Names:

Felix Talnack^a, Sebastian Hutsch^b, Michael Bretschneider^c, Yulia Krupskaya^c, Bernd Büchner^c, Marc Malfois^d, Mike Hambsch^a, Frank Ortmann^b, Stefan C. B. Mannsfeld^a*

Author Address:

^a Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany

^b Department of Chemistry, Technische Universität München, 85748 Garching b. München, Germany

and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany

^c Leibniz Institute for Solid State and Materials Research Dresden, IFW, Helmholtzstraße 20, 01069, Dresden, Germany

^d ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain

* Corresponding author, Email: Stefan.mannsfeld@tu-dresden.de

Figure S1: Cross-polarized optical microscopy images of shear-coated C10-DNTT thin films during heating. The images show the same area as in Figure 1, but rotated by 45°. The orange ribbons from Figure 1 are visible here as green ribbons, which do not change their color upon heating. The shear-coating is indicated by the white arrow. The scale bar corresponds to 400 µm.

Figure S2: Indexed 2D diffraction patterns at room temperature and at 443 K for the low temperature polymorph Ib and the high temperature polymorph II. The crystal structure refinement for polymorph Ib and II was performed on the respective low and high temperature images. The peak indexing and extraction of the unit cell parameters was performed by using the software WxDiff⁴⁷, with the assumption that the a and b axis are parallel to the substrate plane. First the in-plane unit cell parameters a and b were calculated by extracting the Q_{xy} values of the Bragg rods and minimizing the residual between the measured Q_{xy} values and the calculated values $Q_{xy} = \sqrt{(ha_{\parallel}^* + kb_{\parallel}^*)^2}$ where hkl are the Miller indices of the reflections and a_{\parallel}^* , b_{\parallel}^* are the reciprocal lattice vectors parallel to the substrate plane. In a next step, the out-of-plane positions of the peaks

are taken into account as well. The Q_z values of a specific reflection can be calculated by $Q_z = (ha_{\perp}^* + kb_{\perp}^* + lc^*)$, where hkl are again the Miller indices and a_{\perp}^* , b_{\perp}^* , c^* are the reciprocal lattice vectors perpendicular to the substrate plane. The optimized parameters for the in-plane and complete unit cells are calculated by minimizing a residual between the observed and calculated parameters by the method of least squares.

Figure S3: Comparison between 2D diffraction patterns calculated from literature data and the obtained measurement at room temperature. The slight mismatch in in- and out-of-plane scattering vectors is attributed to thermal expansion as the literature data is measured from bulk crystals at 200 K. The Q_{xy} and Q_z values were calculated using the same equations as for the peak indexing and the maximum intensity is calculated from the position of the atoms inside the unit cell. The method for calculating the intensity is the same that is used later in the refinement process and is described in detail in a following section. The full width at half maximum (FWHM) of the peaks is set to 0.04 Å⁻¹ in the in-plane direction and 0.1 Å⁻¹ in the out-of-plane direction to match the peak widths in the measured diffraction image and to correspond to coherence lengths of 14 nm and 6 nm for the in-plane and out-of-plane direction, respectively. The values were calculated by the Scherrer formula with a K shape factor of 0.9.^{48,49}

Figure S4: a) GIWAXS images of a sample with extensive beam damage. The intensity of the peaks originating from crystallites in the high temperature polymorph II diminishes and streak-like peaks at the peak positions of the original polymorph Ib reappear. b) Schematic of the film composition. The top layers are comprised of lying molecules, which are removed by the beam damage first. Later the molecules in the high temperature polymorph II (shown with an orange background) are first probed and later destroyed as well. This leaves only the last layer or layers at the bottom of the film left, which resemble the structure of the original polymorph Ib again.

Figure S5: a) Schematic representation of the film structure of evaporated C10-DNTT thin films on the left and a scattering image with highlighted peaks on the right. In the schematic, the layers with the purple background represent standing molecules in the low temperature polymorph Ib and the layers with the red background on top represent molecules in polymorph Ib that are lying on top of the film. In the scattering image, the solid light circles denote peaks originating from the lying molecules on top of the film, whereas the darker dashed circles designate peaks stemming from the film underneath. b) AFM images of evaporated C10-DNTT films after being heated to different temperatures. The reduction of the nanostructures on top of the films at higher temperatures explains the reduction of intensity of the peaks originating from lying crystallites. The scale bar corresponds to 1 μ m.

Figure S6: 2D scattering images obtained by GIWAXS measurements at different temperatures of evaporated C10-DNTT thin films with a polystyrene capping layer. A clear change in the diffraction pattern can be observed above 400 K, which persists to over 453 K and during cooling down to room temperature. The observed diffraction patterns of the two polymorphs are equivalent to the ones obtained from films without a capping layer with slightly more defined peaks.

Figure S7: Time series of 2D scattering images obtained by GIWAXS measurements of evaporated C10-DNTT thin films with a polystyrene capping layer after heating and cooling. The scattering intensities of polymorph II are only faintly visible after the films are cooled to 278 K and heated again to room temperature. After this there is no significant change in the diffraction patterns with time.

Figure S8: a) Schematic of the GIWAXS setup with the physical quantities used in the equations for the indexing and refinement process. b) Starting position of the molecules for the refinement procedure. The position of the center of mass of the molecules is fixed but rotation in three directions are allowed. The inset shows the possible rotation direction of the ball joint incorporated in the first carbon atom of the alkyl chain.

Figure S9: a) Crystal structure of polymorph Ib refined with stiff side chains and the corresponding intensity profiles. The refinement worked well with stiff side chains for the low temperature case, as they are in the same configurations as in the packing obtained from single crystal literature data. b) Crystal structure of polymorph II refined with stiff side chains and the corresponding intensity profiles. The side chains are not completely parallel, which leads to enhanced intensities in the 01I rod $(Q_{xy} = 0.7 \text{ Å}^{-1})$ at low Q_z values which are not observed experimentally.

We provide the crystallographic information files (cif) of the low temperature polymorph Ib and the high temperature polymorph II in the following. In order to use them, copy the contents into a file and save it with the .cif extension.

Low temperature polymorph Ib

```
# Disclaimer: This is crystal structure was refined from thin film data
# obtained by GIWAXS measurements and is therefore non-standard.
# The refinement process was heavily constrained. The molecular and
sidechains
# were assumed to be rigid and connected by a 'ball joint'.
# For details please refer to the original publication.
# This cif file contains the low temperature thin film polymorph Ib
# of C10-DNTT.
```

data_C10DNTT_on_SiO2_at_25degC

C10-DNTT _chemical_name_common _chemical_formula_moiety 'C42 H52 S2' 'C42 H52 S2' chemical formula sum chemical formula structural ? chemical melting point ? chemical formula weight 620.96 _symmetry cell setting triclinic loop _symmetry_equiv_pos_site_id symmetry equiv pos as xyz 1 x,y,z _cell_length a 6.0867 _cell_length_b 8.0301 cell length c 37.9349 _cell_angle_alpha 90.897 _cell_angle beta 86.298 _cell_angle gamma 90.131 _cell_volume 1850.040 _cell_formula units Z 2 _cell_measurement temperature 298 'thin-film' exptl crystal description _exptl_crystal_colour yellow _diffrn_ambient_temperature 293 _diffrn_radiation probe x-ray diffrn radiation type synchrotron _diffrn_radiation_wavelength1.0 diffrn source synchrotron _diffrn_source_type 'ALBA Beamline BL11 NCD-SWEET' loop_ _atom_site_type_symbol _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z S S1 -0.2924 0.1094 0.0220 C1 С -0.1367 0.0537 0.0575 С C2 0.0833 0.0923 -0.1962 -0.3317 0.1372 0.0990 Η Н1 С C3 -0.0543 0.0331 0.1182 С C4 -0.1046 0.0646 0.1546 Η H2 -0.2374 0.1209 0.1618 0.1799 С C5 0.0342 0.0159 С С6 0.2294 -0.0709 0.1689 Η ΗЗ 0.3233 -0.1083 0.1862 С С7 0.2860 -0.1022 0.1341 0.4199 -0.1588 0.1276 Η H4 С 0.1479 С8 -0.0517 0.1073 С С9 0.2047 -0.0797 0.0711 -0.1355 Η H5 0.3380 0.0640 С C10 0.0666 -0.0258 0.0458 С C11 0.0890 -0.0332 0.0079 С C12 -0.0190 0.0583 0.2188 Η Hб -0.0412 0.1802 0.2212 Η H7 0.1105 0.0299 0.2320

С	C13	-0.2186	-0.0277	0.2360
Н	Н8	-0.3481	-0.0052	0.2223
Н	Н9	-0.1935	-0.1495	0.2356
С	C14	-0.2666	0.0319	0.2742
Н	H10	-0.2786	0.1549	0.2745
Н	H11	-0.1399	0.0027	0.2880
С	C15	-0.4738	-0.0391	0.2925
Н	H12	-0.6006	-0.0136	0.2785
Н	H13	-0.4598	-0.1618	0.2934
С	C16	-0.5200	0.0293	0.3301
н	н14	-0 5302	0 1521	0 3291
ц	и15	-0.3933	0 0021	0.3441
C	C17	0.3933	0.0021	0.2492
		-0.7271	-0.0300	0.3492
п	HLO HL7	-0.8545	-0.0106	0.3352
H	HI/	-0.7164	-0.1586	0.3508
C	C18	-0.7690	0.0375	0.3863
Н	HI8	-0.6405	0.0134	0.4001
Н	H19	-0.7813	0.1600	0.3846
С	C19	-0.9760	-0.0289	0.4061
Η	H20	-1.1046	-0.0047	0.3923
Н	H21	-0.9639	-0.1514	0.4078
С	C20	-1.0150	0.0461	0.4431
Н	H22	-1.0308	0.1682	0.4414
Н	H23	-0.8848	0.0240	0.4567
С	C21	-1.2167	-0.0231	0.4628
Н	H24	-1.2007	-0.1437	0.4652
Н	H25	-1.2343	0.0294	0.4863
Н	H26	-1.3467	0.0000	0.4497
S	S2	0.2924	-0.1094	-0.0220
C	C22	0 1367	-0 0537	-0 0575
C	C22	0.1962	-0 0833	-0 0923
U U	U23	0.3317	-0 1372	-0.0923
C	C24	0.0543	_0 0331	_0 1192
C	C24 C25	0.0343	-0.0331	-0.1102
	120	0.1046	-0.0646	-0.1546
H	HZ8	0.2374	-0.1209	-0.1618
C	C26	-0.0342	-0.0159	-0.1/99
С	C27	-0.2294	0.0709	-0.1689
Н	H29	-0.3233	0.1083	-0.1862
С	C28	-0.2860	0.1022	-0.1341
Η	Н30	-0.4199	0.1588	-0.1276
С	C29	-0.1479	0.0517	-0.1073
С	C30	-0.2047	0.0797	-0.0711
Н	H31	-0.3380	0.1355	-0.0640
С	C31	-0.0666	0.0258	-0.0458
С	C32	-0.0890	0.0332	-0.0079
С	C33	0.0190	-0.0583	-0.2188
Н	H32	0.0412	-0.1802	-0.2212
Н	Н33	-0.1105	-0.0299	-0.2320
С	C34	0.2186	0.0277	-0.2360
Н	Н34	0.3481	0.0052	-0.2223
Н	Н35	0.1935	0.1495	-0.2356
С	C35	0.2666	-0.0319	-0.2742
H	нзе	0.2786	-0.1549	-0.2745
н	нст нст	0 1399	-0 0027	-0 2880
C	C36	0 4738	0 02, 0 0201	-0 2025
ч	П38 С20	0.1,30	0.0391	-0 2725
ц	ПЗ0 1120	0.0000	0.0150	-0.2100
11 C	rco rco	0.4000	-0 0202	U.2934 _0 3301
		0.5200	-0.0293	-0.3301
н	H4U	U.JJUZ	-U.1321	-U.3291

Н	H41	0.3933	-0.0021	-0.3441
С	C38	0.7271	0.0360	-0.3492
H	H42	0.8543	0.0106	-0.3352
Η	H43	0.7164	0.1586	-0.3508
С	C39	0.7690	-0.0375	-0.3863
Η	H44	0.6405	-0.0134	-0.4001
H	H45	0.7813	-0.1600	-0.3846
С	C40	0.9760	0.0289	-0.4061
Η	H46	1.1046	0.0047	-0.3923
Н	H47	0.9639	0.1514	-0.4078
С	C41	1.0150	-0.0461	-0.4431
Н	H48	1.0308	-0.1682	-0.4414
Н	Н49	0.8848	-0.0240	-0.4567
С	C42	1.2167	0.0231	-0.4628
Н	H50	1.2007	0.1437	-0.4652
Н	H51	1.2343	-0.0294	-0.4863
Н	H52	1.3467	-0.0000	-0.4497
S	S3	0.7942	0.6087	-0.0209
С	C43	0.6385	0.5558	-0.0570
С	C44	0.6991	0.5868	-0.0915
Η	Н5З	0.8354	0.6402	-0.0976
С	C45	0.5571	0.5388	-0.1179
С	C46	0.6086	0.5719	-0.1539
Η	H54	0.7422	0.6277	-0.1606
С	C47	0.4697	0.5253	-0.1798
С	C48	0.2731	0.4392	-0.1696
Η	H55	0.1791	0.4032	-0.1873
С	C49	0.2155	0.4064	-0.1352
Η	Н56	0.0808	0.3504	-0.1292
С	C50	0.3536	0.4548	-0.1078
С	C51	0.2957	0.4253	-0.0719
Η	H57	0.1616	0.3698	-0.0653
С	C52	0.4340	0.4769	-0.0461
С	C53	0.4108	0.4677	-0.0082
С	C54	0.5242	0.5695	-0.2183
Η	H58	0.5524	0.6908	-0.2195
Η	Н59	0.3931	0.5457	-0.2317
С	C55	0.7191	0.4795	-0.2365
Н	Н60	0.8499	0.4973	-0.2226
H	H61	0.6879	0.3585	-0.2372
С	C56	0.7693	0.5408	-0.2741
Η	Н62	0.7874	0.6634	-0.2731
Η	Н6З	0.6409	0.5161	-0.2880
С	C57	0.9725	0.4657	-0.2932
Η	Н64	1.1008	0.4866	-0.2790
Η	H65	0.9524	0.3436	-0.2953
С	C58	1.0214	0.5358	-0.3302
Η	H66	1.0376	0.6581	-0.3280
Η	Н67	0.8931	0.5133	-0.3443
С	C59	1.2247	0.4665	-0.3500
Н	H68	1.3534	0.4872	-0.3358
H	Н69	1.2079	0.3444	-0.3528
С	C60	1.2695	0.5418	-0.3864
H	H70	1.1396	0.5224	-0.4003
H	H71	1.2879	0.6637	-0.3835
С	C61	1.4727	0.4714	-0.4069
H	H72	1.6028	0.4910	-0.3930
Н	H73	1.4545	0.3495	-0.4098
С	C62	1.5147	0.5482	-0.4433

Н	H74	1.5366	0.6697	-0.4404			
Н	H75	1.3832	0.5308	-0.4570			
С	C63	1.7124	0.4753	-0.4638			
Н	H76	1.6904	0.3554	-0.4673			
Н	H77	1.7323	0.5291	-0.4867			
Н	H78	1.8438	0.4937	-0.4505			
S	S4	0.2058	0.3913	0.0209			
2	C64	0.3615	0.4442	0.0570			
С	C65	0.3009	0.4132	0.0915			
H	Н79	0.1646	0.3598	0.0976			
2	C66	0.4429	0.4612	0.1179			
С	C67	0.3914	0.4281	0.1539			
Н	Н80	0.2578	0.3723	0.1606			
С	C68	0.5303	0.4747	0.1798			
С	C69	0.7269	0.5608	0.1696			
Н	H81	0.8209	0.5968	0.1873			
С	C70	0.7845	0.5936	0.1352			
H	H82	0.9192	0.6496	0.1292			
С	C71	0.6464	0.5452	0.1078			
С	C72	0.7043	0.5747	0.0719			
Н	H83	0.8384	0.6302	0.0653			
C	C73	0.5660	0.5231	0.0461			
C	C74	0.5892	0.5323	0.0082			
C	C75	0.4758	0.4305	0.2183			
н	н84	0 4476	0 3092	0.2195			
н	H85	0.6069	0.4543	0.2317			
- -	C76	0 2809	0 5205	0 2365			
U H	н86	0.1501	0.5027	0.2226			
н	н87	0 3121	0 6415	0.2372			
~	C77	0.2307	0 4592	0.2741			
ц Ц	н88	0.2126	0.3366	0.2731			
ц	1100 Ц89	0.2120	0.2500	0.2880			
1 ~	C78	0.0275	0.5343	0.2000			
_ ц	ц а о	-0 1008	0.5134	0.2790			
и ц	п90 цQ1	0.1000	0.5154	0.2750			
п С	ПЭ1 С70	0.0470	0.0504	0.2900			
	1102	-0.0214	0.4042	0.3302			
л Т	ロッン ロロン	-0.03/0	0.3419 0 1067	0.3443			
п С	соо Соо	C 2247	U.400/ 0 5325	0.3443			
		-0.224/	U.3333 0 E100	0.3350			
п 11	п94 1105	-0.3334	U.JIZ8 0 6556	U.JJJ0 0 2520			
п С	НУЭ	-0.20/9	0.0000	0.3528			
C II	C&T	-0.2695	0.4582	0.3864			
H	НУб	-0.1396	0.4//6	0.4003			
H	НУ/ СОС	-0.28/9	0.3363	0.3835			
	082	-0.4/2/	0.5286	0.4069			
H 	Н98	-0.6028	0.5090	0.3930			
H	НУУ	-0.4545	0.6505	0.4098			
2	C83	-0.5147	0.4518	0.4433			
H	H100	-0.5366	0.3303	0.4404			
H	H101	-0.3832	0.4692	0.4570			
С	C84	-0.7124	0.5247	0.4638			
H	H102	-0.6904	0.6446	0.4673			
H	H103	-0.7323	0.4709	0.4867			
T T	<u>ц</u> 1 О Л	-0 8438	0 5063	0 4505			

High temperature polymorph II

Disclaimer: This is crystal structure was refined from thin film data # obtained by GIWAXS measurements and is therefore non-standard. # The refinement process was heavily constrained. The molecular and sidechains # were assumed to be rigid and connected by a 'ball joint'. # For details please refer to the original publication. # This cif file contains the high temperature thin film polymorph II # of C10-DNTT.

data_C10DNTT_on_SiO2_at_170degC

_che _che _che _che _che _che _syr	emical emical emical emical emical emical mmetry	_name_commor _formula_mor _formula_sur _formula_str _melting_por _formula_wer _cell_setting_	n iety n cuctural int ight ng	C10-DNTT 'C42 H52 S2' 'C42 H52 S2' ? ? 620.96 triclinic		
loop syr ce: _ce:	p_ mmetry_ ,y,z ll_leng ll_leng ll_ang ll_ang ll_ong ll_ong ll_ong ffrn_ar ffrn_ra ffrn_ra ffrn_ra ffrn_so ffrn_so	_equiv_pos_s _equiv_pos_s gth_a gth_b gth_c le_alpha le_beta le_gamma ume nula_units_s surement_ter ystal_descr: ystal_descr: ystal_colous nbient_tempe adiation_pro adiation_way ource_type	site_id as_xyz mperature iption c erature obe pe velength1.0	6.2754 8.9485 37.4332 90.339 86.806 92.811 2096.276 2 443 'thin-film' yellow 293 x-ray synchrotron 'ALBA Beamline BL11 NCD-SWEET		
loop _atc _atc _atc _atc _s C C H C C H C C H C C H	p_ om_site om_site om_site om_site S1 C1 C2 H1 C3 C4 H2 C5 C6 H3	e_type_symbole e_label e_fract_x e_fract_y e_fract_z 0.2927 0.1378 0.2035 0.3422 0.0631 0.1246 0.2639 -0.0123 -0.2210 -0.3179	-0.0455 0.0415 0.0757 0.0521 0.1470 0.1889 0.1685 0.2587 0.2856 0.3303	-0.0271 -0.0581 -0.0925 -0.1016 -0.1145 -0.1500 -0.1594 -0.1715 -0.1574 -0.1722		

С	С7	-0.2864	0.2488	-0.1231
Н	H4	-0.4266	0.2705	-0.1144
С	С8	-0.1482	0.1785	-0.1001
С	C 9	-0.2105	0 1420	-0.0644
н	Н5	-0 3497	0 1628	-0 0550
C	C10	-0.0602	0.1020	-0 0428
C		-0.0092	0.0757	-0.0428
C		-0.0894	0.0326	-0.0057
С	CIZ	0.0615	0.3090	-0.2091
H	НG	-0.0709	0.3331	-0.2207
Н	H7	0.0468	0.2025	-0.2021
С	C13	0.2470	0.3284	-0.2365
Н	Н8	0.2684	0.4356	-0.2429
Н	Н9	0.3787	0.2968	-0.2260
С	C14	0.2088	0.2371	-0.2704
Н	H10	0.0705	0.2636	-0.2795
н	н11	0 1966	0 1298	-0 2640
C	C15	0 3803	0.2500	-0 3003
		0.3003	0.2590	-0.3003
п		0.3909	0.3007	-0.3003
H	HI3	0.51/9	0.2281	-0.2917
C	CI6	0.3310	0.1/03	-0.3341
H	H14	0.1916	0.2000	-0.3422
Н	H15	0.3163	0.0626	-0.3280
С	C17	0.4961	0.1908	-0.3648
Н	H16	0.5130	0.2985	-0.3709
Н	H17	0.6352	0.1590	-0.3571
С	C18	0.4389	0.1027	-0.3982
н	H18	0.4199	-0.0046	-0.3919
н	н19	0 3006	0 1357	-0 4060
C	C1 Q	0.5000	0 1206	-0 1293
	1120	0.0000	0.1200	-0.4293
п	ПZU 1101	0.0243	0.2200	-0.4330
H	HZI	0.7438	0.08/7	-0.4215
С	C20	0.5454	0.0315	-0.4624
H	H22	0.4087	0.0661	-0.4705
H	H23	0.5232	-0.0755	-0.4560
С	C21	0.7129	0.0469	-0.4927
Н	H24	0.8477	0.0102	-0.4851
Н	H25	0.6662	-0.0119	-0.5133
Н	H26	0.7339	0.1524	-0.4995
S	s2	-0.2927	0.0455	0.0271
С	C22	-0.1378	-0.0415	0.0581
С	C2.3	-0.2035	-0.0757	0.0925
н	H27	-0 3422	-0.0521	0 1016
C	C24	-0.0631	-0 1470	0 1145
C	C24 C25	0.0001	0.1000	0.1500
		-0.1240	-0.1009	0.1500
H	HZ8	-0.2639	-0.1685	0.1594
С	C26	0.0123	-0.2587	0.1/15
С	C27	0.2210	-0.2856	0.1574
Н	H29	0.3179	-0.3303	0.1722
С	C28	0.2864	-0.2488	0.1231
Н	Н30	0.4266	-0.2705	0.1144
С	C29	0.1482	-0.1785	0.1001
С	C30	0.2105	-0.1420	0.0644
Н	H31	0.3497	-0.1628	0.0550
C	C31	0.0692	-0.0757	0.0428
Č	C 2 2	0 0801	-0 0326	
C	C32	_0 0615	-0 3000	0.0007
		-0.0013	-0.3090	0.2091
п	H3∠	0.0709	-0.3331	0.2207
H	HJJ	-0.0468	-0.2025	0.2021
C	C34	-0.2470	-0.3284	0.2365

H H	Н34 Н35	-0.2684 -0.3787	-0.4356 -0.2968	0.2429 0.2260
С	C35	-0.2088	-0.2371	0.2704
Н	Н36	-0.0705	-0.2636	0.2795
Н	Н37	-0.1966	-0.1298	0.2640
С	C36	-0.3803	-0.2590	0.3003
Н	Н38	-0.3969	-0.3667	0.3063
Н	Н39	-0.5179	-0.2281	0.2917
С	C37	-0.3310	-0.1703	0.3341
Н	H40	-0.1916	-0.2000	0.3422
Н	H41	-0.3163	-0.0626	0.3280
С	C38	-0.4961	-0.1908	0.3648
Н	H42	-0.5130	-0.2985	0.3709
Н	H43	-0.6352	-0.1590	0.3571
С	C39	-0.4389	-0.1027	0.3982
Н	H44	-0.4199	0.0046	0.3919
Н	H45	-0.3006	-0.1357	0.4060
С	C40	-0.6053	-0.1206	0.4293
Н	H46	-0.6243	-0.2280	0.4356
Н	H47	-0.7438	-0.0877	0.4215
С	C41	-0.5454	-0.0315	0.4624
Н	H48	-0.4087	-0.0661	0.4705
Н	H49	-0.5232	0.0755	0.4560
С	C42	-0.7129	-0.0469	0.4927
Н	Н50	-0.8477	-0.0102	0.4851
Н	Н51	-0.6662	0.0119	0.5133
Н	Н52	-0.7339	-0.1524	0.4995
S	S3	0.2068	0.3825	0.0125
С	C43	0.3603	0.3718	0.0504
С	C44	0.2934	0.3039	0.0817
Н	Н5З	0.1546	0.2567	0.0845
С	C45	0.4328	0.3046	0.1102
С	C46	0.3700	0.2397	0.1436
Н	Н54	0.2306	0.1941	0.1471
С	C47	0.5060	0.2405	0.1715
С	C48	0.7149	0.3059	0.1657
Н	Н55	0.8111	0.3040	0.1844
С	C49	0.7815	0.3716	0.1340
Н	Н56	0.9218	0.4164	0.1312
С	C50	0.6443	0.3743	0.1050
С	C51	0.7078	0.4441	0.0722
Н	Н57	0.8472	0.4898	0.0688
С	C52	0.5675	0.4460	0.0448
С	C53	0.5891	0.5128	0.0098
С	C54	0.4308	0.1758	0.2078
Н	Н58	0.4920	0.2800	0.2067
Н	Н59	0.5414	0.1124	0.2166
С	C55	0.2420	0.1700	0.2348
Н	H60	0.1268	0.2287	0.2257
Н	H61	0.1864	0.0651	0.2376
С	C56	0.3027	0.2323	0.2712
Н	H62	0.3694	0.3340	0.2676
Η	H63	0.4114	0.1689	0.2806
С	C57	0.1188	0.2407	0.2990
Η	H64	0.0072	0.3011	0.2893
Η	H65	0.0556	0.1387	0.3035
С	C58	0.1853	0.3094	0.3344
Η	H66	0.2516	0.4105	0.3296
Н	Н67	0.2958	0.2479	0.3440

С	C59	0.0063	0.3224	0.3627
H	H68	-0.1057	0.3828	0.3531
H	H69	-0.0583	0.2214	0.3681
С	C60	0.0788	0.3939	0.3973
H	Н7О	0.1922	0.3341	0.4066
Н	H71	0.1417	0.4954	0.3919
С	C61	-0.0996	0.4059	0.4263
Н	H72	-0.2131	0.4659	0.4171
Н	Н7З	-0.1628	0.3045	0.4318
С	C62	-0.0240	0.4776	0.4608
Н	Н74	0.0360	0.5800	0.4555
Н	H75	0.0918	0.4190	0.4697
С	C63	-0.1999	0.4859	0.4896
н	н76	-0 2574	0 3847	0 4955
н	н77	-0 1430	0 5331	0 5110
и Ц	н78	-0 3141	0.5452	0.4811
C C	п70 сл	0.7032	0.6175	-0 0125
C	C64	0.7952	0.6292	-0.0504
C	C04 C65	0.0397	0.0202	-0.0304
	1170	0.7000	0.0901	-0.0017
H	H/9	0.8454	0.7433	-0.0845
C	066	0.5672	0.6954	-0.1102
C	C6/	0.6300	0./603	-0.1436
H	Н80	0.7694	0.8059	-0.14/1
С	C68	0.4940	0.7595	-0.1715
С	C69	0.2851	0.6941	-0.1657
H	H81	0.1889	0.6960	-0.1844
С	C70	0.2185	0.6284	-0.1340
Н	H82	0.0782	0.5836	-0.1312
С	C71	0.3557	0.6257	-0.1050
С	C72	0.2922	0.5559	-0.0722
Н	Н8З	0.1528	0.5102	-0.0688
С	C73	0.4325	0.5540	-0.0448
С	C74	0.4109	0.4872	-0.0098
С	C75	0.5692	0.8242	-0.2078
Н	H84	0.5080	0.7200	-0.2067
Н	H85	0.4586	0.8876	-0.2166
C	C76	0.7580	0.8300	-0.2348
н	н86	0 8732	0 7713	-0 2257
н	н87	0 8136	0 9349	-0 2376
C	1107 C77	0.6973	0.7677	-0 2712
с u	U 2 2	0.6306	0.7077	-0 2676
и П	1100 1100	0.0300	0.0000	-0.2070
п С	поэ сто	0.0000	0.0311	-0.2800
		0.0012	0.7393	-0.2990
H	H90	0.9928	0.6989	-0.2893
H	HYI	0.9444	0.8613	-0.3035
C	0/9	0.814/	0.6906	-0.3344
H	H92	0.7484	0.5895	-0.3296
H	H93	0.7042	0.7521	-0.3440
С	C80	0.9937	0.6776	-0.3627
H	H94	1.1057	0.6172	-0.3531
H	Н95	1.0583	0.7786	-0.3681
С	C81	0.9212	0.6061	-0.3973
Н	Н96	0.8078	0.6659	-0.4066
Н	Н97	0.8583	0.5046	-0.3919
С	C82	1.0996	0.5941	-0.4263
Н	Н98	1.2131	0.5341	-0.4171
Н	Н99	1.1628	0.6955	-0.4318
С	C83	1.0240	0.5224	-0.4608
Н	H100	0.9640	0.4200	-0.4555

Н	H101	0.9082	0.5810	-0.4697
С	C84	1.1999	0.5141	-0.4896
Н	H102	1.2574	0.6153	-0.4955
Н	H103	1.1430	0.4669	-0.5110
Н	H104	1.3141	0.4548	-0.4811

References

- (47) S. C. B. Mannsfeld, WxDiff, Stanford Synchrotron Radiation Lightsource, 2009
- (48) B. E. Warren, X-Ray Diffraction, Addison-Wesley Pub. Co.: Reading, Mass., 1969

(49) Rivnay J., Mannsfeld S. C. B., Miller C. E., Salleo A., Toney M. F., Quantitative Determination of

Organic Semiconductor Microstructure from the Molecular to Device Scale Chem. Rev., 2012, **112**, 10,

5488-5519, DOI: 10.1021/cr3001109.