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S1     Simulation Details and Calculated Properties 

This section provides information about the simulations performed of IDP sequences in Dataset 

A and how properties were computed. 

In-house molecular dynamics simulations were performed with the HPS model using the 

LAMMPS simulation package. Simulations were preceded by an energy minimization and run 

for 109 fs using timesteps of 10 fs, thermostatted at 300 K using the Langevin thermostat with a 

damping constant of 1 ps. Thermodynamic quantities, used for the calculation of heat capacity 

𝐶𝑣, were obtained in intervals of 100 ps. Atom coordinates, used for the calculation radius of 

gyration 𝑅g and decorrelation time 𝜏𝑁, were obtained in intervals of 5 ps. The following 

equations were used to calculate 𝑅g , 𝐶𝑣, and  𝜏𝑁: 

𝑅g ∶=  〈𝑅g
2〉1/2 = (

1

𝑁
∑〈(𝑅𝑖 − 𝑅𝐶𝑀)2〉

𝑁

𝑖=1

)

1
2

 

where N is the total number of atoms, and 𝑅𝑖 and 𝑅𝐶𝑀 are the position of atom 𝑖 and center of 

mass of all atoms in the system respectively, 

𝐶𝑣 ∶=  〈𝐶𝑣〉 =
〈𝐸2〉 − 〈𝐸〉2 

𝑘𝑏𝑇2  

where 𝐸 is the total internal energy of the system, 

𝜏𝑁 ∶=  〈𝜏𝑁〉  =  ∫ 〈𝛿𝑅(𝑡)𝛿𝑅(0)〉 𝑑𝑡
∞

0

, 𝛿𝑅(𝑡) = 𝑅𝑖=𝑁(𝑡) − 𝑅𝑖=1(𝑡) 

where 𝑅𝑖=𝑁(𝑡) and 𝑅𝑖=1(𝑡) are the end positions of the polymer at a given time t. The integral 

was approximated by fitting the end-to-end time autocorrelation function to a Kohlrausch–

Williams–Watts (KWW) function and performing an analytical integration.  

 

 

 

 

 

 

 

 

 

 

 



S2     Model Architectures and Hyperparameters 

This section broadly covers hyperparameters and their associated considerations in evaluating 

featurization strategies. Sections S2.1-S2.4 provide details on the different neural network 

architectures employed and their associated hyperparameters. The indication of an “optional” 

layer means that the presence of the layer itself, and all associated parameters, is a 

hyperparameter. The indication of an “optional, conditional” layer means that its presence is 

again a hyperparameter but is conditional on the presence of another indicated hyperparameter. 

Section S2.5 probes the sensitivity of model performance trained to architecture and training 

hyperparameters for fixed featurization strategies.  

 

S2.1     Densely Connected Neural Network  

 

L1: Dense Layer  

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

L2: Dense Layer (Optional) 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

L3: Dense Layer (Optional, Conditional on L2) 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

 

S2.2     1-D Convolutional Neural Network  

 

Conv1: 1-D Convolutional Layer 

 Filter: [8-64] intervals of 8 

 Kernel Width: [5,25] intervals of 5 

P1: 1-D Pooling Layer (Optional) 



 Type: Max, Average 

 Size: [3-9] intervals of 2 

Conv2: 1-D Convolutional Layer (Optional) 

 Filter: [8-64] intervals of 8 

 Kernel Width: [5,25] intervals of 5 

P2: 1-D Pooling Layer (Optional) 

 Type: Max, Average 

 Size: [3-9] intervals of 2 

Flatten: Flattening operation 

L1: Dense Layer 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

L2: Dense Layer (Optional) 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

 

S2.3     Graph Convolutional Neural Networks  

 

GL1: Graph Convolutional Layer  

 Type: GCN, GAT 

 Size: [2, 42] intervals of 4 

GL2: Graph Convolutional Layer (Optional) 

 Type: GCN, GAT 

 Size: [2, 42] intervals of 4 

P1: Pooling 

 Type: Sum, Average 

L1: Dense Layer  



Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

L2: Dense Layer (Optional) 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

 

S2.4     Long short-term memory cells 

 

B- LSTM1: Bidirectional Long Short-Term Memory Cell 

 Size: [5-20] intervals of 5 

LSTM2: Long Short-Term Memory Cell (Optional) 

 Size: [5-20] intervals of 5 

Flat: Flattening operation 

L1: Dense Layer  

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

L2: Dense Layer (Optional) 

Size: [10 – 750] intervals of 20  

Dropout: [0.0 – 0.8] intervals of 0.1 

Activation: ReLU 

Common Hyperparameters and Training Settings 

Batch Size = [32,64,128,256] *** This interval number was scaled by 10 for models trained on dataset D due to being an 

order of magnitude larger than the other datasets. 

Learning Rates = [0.001, 0.005,0.01]  

Optimizer = Adam 

Epochs = 400  

Early Stopping Employed, 50 epochs of patience 



Validation Split = 15% Training data 

____________________________________________________________________________ 

During training, it was found that transforming inputs and outputs occasionally helped improve 

performances of models. The nature of the transformation or whether it was performed is 

detailed in the Model Performances csv provided in the supporting information.  

 

S2.5     Hyperparameter Sensitivity Analysis 

 

 

 

Model architectures and other training hyperparameters were optimized to construct fair 

comparisons between the utility of the featurization strategies explored in this study. Ultimately, 

the selection of a particular featurization strategy can be viewed as its own hyperparameter 

during model development. In this setting, hyperparameters would ideally be simultaneously co-

optimized to construct the optimal model, defined by a fixed featurization strategy, model 

architecture, and learning procedure. From here, one can reasonably conclude that the selected 

featurization strategy is the best possible representation of the current data.  

Fig. S1 shows that both the absolute and relative performance of models can vary significantly 

as a function of model architecture. For example, entry A1 of panel A suggests using a 

descriptor vector for CU representation in the scaled fingerprint paradigm is significantly worse 

than using a OHE vector. Entries A2, A3, and the hyperparameter-optimized models suggest 

the opposite. Similarly in panel B, entries A1 and A2 suggest the descriptor vector is worse than 

OHE for CNN model performance trained on a sequence tensor representation, whereas the 

remaining entries suggest there is no significant difference. To control for this sensitivity, we 

only compare hyperparameter-optimized models in the main text. For a given architecture, the 

domain of hyperparameter optimization is kept fixed when training models to enable facile 

Fig S1: Comparison of CU fingerprints made with different, fixed model architectures for the prediction task in 
Dataset B. The panels display model performances constructed from (A) scaled fingerprint and (B) sequence tensor 
featurization paradigms. Both bars above an entry labeled by A* are performances obtained from the same 
architecture. Each bar above an entry labeled by Opt. are the performances of hyperparameter-optimized models for 
each CU vector representation. Hyperparameters associated with specific entries are listed in Table S1.  



comparisons of different CU fingerprints. Therefore, the number of hyperparameters associated 

with an architecture (DNN, CNN, LSTM, GCN) is considered as part of the overall featurization 

strategy. 
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S3     Description of Supporting Content 

This section provides details of the other files present in the supporting content.  

 

S3.1     Dataset Metadata 

Metadata used for chemical unit representations specific to Datasets {A, B, C, D} are provided 

in csv titled Dataset{A,B,C,D}_metadata.csv. Each column can be taken as a different means of 

representation for the chemical unit of polymers in each dataset and were employed in scaled 

fingerprint and sequence explicit models.   

S3.2     Dataset A Sequences and Labels 

The sequences of intrinsically disordered proteins, obtained through the DISPROT database, 

that were modeled with the HPS molecular dynamics simulations are contained in 

Datdaset_A_Sequences.txt. Here, the residue identities are represented as numerical 

encodings. The identity of the residue corresponding to a particular number encoding can be 

found in DatasetA_metadata.csv. Their corresponding computed labels are provided in a csv file 

titled labels.csv. 

S3.3     Model Error Metrics 

Details on the model performances across all datasets is provided in a csv titled Model 

Performances.csv. Each line has a corresponding dataset, model / representation type, the 

identity of the chemical fingerprint used in the representation, strategy of handling degree of 

polymerization, and the indication of potential input and output transformations used. The 

remaining columns provide the MAE in absolute units and the goodness of fit R2 of the models, 

and their corresponding standard errors.  

 

 

 

 

 

 


