Electronic Supplementary Material (ESI) for Materials Horizons.

Mineral Plastic Foams

Philipp Menold ^{a,b}, Helmut Cölfen ^{a,*}, Cosima Stubenrauch ^{b,‡}

 ^a Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
^b Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

*helmut.coelfen@uni-konstanz.de, 0049 7531 884063 *cosima.stubenrauch@ipc.uni-stuttgart.de, 0049 711 685 64470

Scheme S1: Molecular structure of alkyl polyglucosides (C_nG_m). In our case m = 1.5, n = 8-16.

Figure S1: (left) Optical microscope image of the foamed liquid precursor, which was foamed via microfluidics and consisted of 0.1 M PAA, 0.1 M CaCl2, and 0.5 wt% Plantacare® 2000 UP. The separation of the bubbles (round shape) can be clearly seen. (right) Optical microscope image of the dried solid foam, so-called mineral plastic foam. For solidification a 0.1 M sodium carbonate solution was added to the liquid foam and subsequently dried in air. A homogeneous solid foam cannot be formed due to the low amount of PAA.

Powder X-Ray Diffraction: Powder X-Ray Diffraction (PXRD) measurements were carried out on a Bruker D8 Discover device equipped with a Vantec detector.

Figure S2: X-ray diffractogram of the white precipitate formed instead of mineral plastic. The precipitate was obtained by using a 1:10 mass ratio between sample and 4.0 M lithium hydroxide solution for the deprotonation of the PAA. The XRD pattern with peaks at 2 Θ of 23.1°, 29.3°, 35.9°, 39.4°, 43.2°, 47.4°, and 48.4°, indicates that the sample is calcite. ¹

Mechanical Properties: Mechanical compression tests were carried out with the zwickiLine 5 kN universal testing machine from Zwick / Roell, which was equipped with a 5 kN force transducer and was regulated by the testXpert III software. The stress-strain curves were obtained with normal forces and a test speed of 1 mm min⁻¹. A pre-force of 5.0 N was chosen to obtain a flat sample surface that was uneven from cutting with a scalpel. The slope of the linear part at the beginning of the stress-strain curve (cf. dashed regression line in Fig. S3) was used to determine the Young's modulus *E*. It holds

$$E = \frac{\sigma}{\varepsilon} = \frac{F \cdot I_0}{A \cdot \Delta I} \tag{1}$$

with σ being the stress (force F acting on a cross-sectional area A) and ε being the strain (difference Δl between the sample height before compression l_0 and after compression l).² We obtained $E = 48.26 \pm 0.19$ MPa for a cube-shaped mineral plastic foam sample with a density of 327 ± 31 kg m⁻³.

Figure S3: Stress (σ) - strain (ϵ) curve with a pre-set force of 5.0 N for a cube-shaped mineral plastic foam sample with a density of (327 ± 31) kg m⁻³. The Young's modulus of (48.3 ± 0.2) MPa was determined from the slope of the linear part (dashed curve) at the beginning of the stress-strain curve.

Solid foams have been studied extensively and there is general agreement that the relative Young's modulus ($E_{\text{foam}}/E_{\text{polymer}}$) is proportional to the squared relative density ($\rho_{\text{foam}}/\rho_{\text{polymer}}$)². It holds for open-pore systems

$$\frac{E_{foam}}{E_{polymer}} = C_c \cdot \left(\frac{\rho_{foam}}{\rho_{polymer}}\right)^2 \tag{2}$$

with $C_c \sim 1$ according to Gibson and Ashby.²⁻⁴ Using $E_{polymer} = (380 \pm 2)$ MPa (experimental stressstrain curve not shown) and $\rho_{polymer} = (1117 \pm 4)$ kg m⁻³, one obtains a relative elastic modulus $(E_{foam}/E_{polymer})$ of 0.127 and a relative squared density $(\rho_{foam}/\rho_{polymer})^2$ of 0.086. The resulting proportionality factor $C_c \sim 1.5$ is in the usual range.

References

- 1. C. G. Kontoyannis and N. V. Vagenas, *Analyst*, 2000, **125**, 251.
- L. J. Gibson, M. F. Ashby, Cellular Solids, Structures and Properties, Cambridge University Press, Cambridge 1999.
- 3. L. J. Gibson, J. Biomech. 2005, 38, 377.
- 4. M. Ashby, R. M. Medalist, Metall. Trans. A 1983, 14A, 1755.