Supporting Information

Assembling Organic-Inorganic Building Blocks for High-Capacity Electrode Design

Xiaolin Zhao^{a,b,c}, Zhongli Hu^d, Yining Li^{a,b,c}, Youwei Wang^{a,b,c}, Erhong Song^{a,b,c}, Li

Zhang^d*, Jianjun Liu^{a,b,c}*

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

^dState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.

Corresponding Author

* E-mail Address: zhangli81@xmu.edu.cn; jliu@mail.sic.ac.cn

Figure S1. (a) Fe2p, (b) N1s and (c) N1s XPS spectra of $FeF_3(4,4'-bpy)$.

Figure S2. (a) The bond lengths of different Fe-F bonds in crystal structure of $Li_x[FeF_3(4,4'-bpy)]$ (x=0, 2, 4, 6, 8). (b) The bond lengths of different C=N and C=C double bonds in crystal structure of $Li_x[FeF_3(4,4'-bpy)]$ (x=0, 2, 4, 6, 8). (c) The double bond reformation of FeF_3(4,4'-bpy).

	Reaction	ΔG/eV
1	$\text{Li}_4[\text{FeF}_3(4,4'\text{-bpy})] \rightarrow \text{Li}_4(4,4'\text{-bpy}) + \text{FeF}_3$	10.44
2	$Li_8[FeF_3(4,4'-bpy)] \rightarrow Li_8(4,4'-bpy) + FeF_3$	11.71
3	$\text{Li}_4[\text{FeF}_3(4,4'\text{-bpy})] \rightarrow \text{Li}[\text{Fe}(4,4'\text{-bpy})] + 3\text{LiF}$	0.57
4	$\text{Li}_8[\text{FeF}_3(4,4'\text{-bpy})] \rightarrow \text{Li}_5[\text{Fe}(4,4'\text{-bpy})] + 3\text{LiF}$	2.42

Table S1. The Gibbs free energy of the decomposition reaction for the $Li_4FeF_3(4,4'-bpy)$ and $Li_8FeF_3(4,4'-bpy)$.

Figure S3. DFT-based molecular dynamic simulation for lithiated structures a. $Li_4[FeF_3(4,4'-bpy)]$ and b. $Li_8[FeF_3(4,4'-bpy)]$.

Figure S4. The projected density of states (pDOS) of $Li_x[FeF_3(4,4'-bpy)]$ (x=2, 4, 6, 8).

$Li_{x}[FeF_{3}(4,4'-bpy)]$	0	2	4	6	8
Magnetic moment	4.8	4.2	0	1.7	3.2
Spin state	High spin	High spin	Low spin	High spin	High spin
Electron number of d	d ^{5.2}	d ^{5.8}	d^{6}	d ^{6.3}	d ^{6.8}
Valence of Fe	+2.8	+2.2	+2	+1.7	+1.2

Table S2. The magnetic moment of Fe in $\text{Li}_{x}[\text{FeF}_{3}(4,4'-\text{bpy})]$ (x=0, 2, 4, 6, 8)

Figure S5. The crystal structure of (a) $VF_3(4,4'-bpy)$ (b) $MnF_3(4,4'-bpy)$ (c) $FeCl_2(4,4'-bpy)$ (d) $MnCl_2(4,4'-bpy)$ (e) $CuF_2(4,4'-bpy)$ along (100) direction and (001) direction. $VF_3(4,4'-bpy)$

Figure S6. The Li-ions storage sites and the structural evolution in $VF_3(4,4'$ -bpy)

Figure S7. The Li-ions storage sites and the structural evolution in $MnF_3(4,4'-bpy)$

Figure S8. The change in Bader charge of (a) $VF_3(4,4'-bpy)$ and (b)MnF₃(4,4'-bpy) during the discharge.

Figure S9. The Li-ions storage sites and the structural evolution in $CuF_2(4,4'$ -bpy)

Figure S10. The Li-ions storage sites and the structural evolution in (a) $\text{FeCl}_2(4,4'\text{-bpy})$ and (b) $\text{MnCl}_2(4,4'\text{-bpy})$.

Figure S11. The voltages of (a) $VF_3(4,4'-bpy)$, (b) $MnF_3(4,4'-bpy)$, (c) $FeCl_2(4,4'-bpy)$, (d) $MnCl_2(4,4'-bpy)$ and (e) $CuF_2(4,4'-bpy)$ during the discharge.

Table S3. Comparison of the lattice parameters of $TMF_3(4,4'-bpy)$ (TM=Fe, V, Mn) and $TMCl_2(4,4'-bpy)$ (TM=Fe, Mn) and the bond lengths of TM-F/Cl/N that were calculated by DFT and DFT+U.

Matariala	Method	Lattice parameters				Bond length/Å	
Materials		a/Å	b/Å	c/Å	$\alpha = \beta = \gamma / \circ$	TM-F/Cl	TM-N
	DFT+ U ($U_{\rm eff}$ = 3.9)	3.924	10.540	11.402	90	1.892	2.170
FeF ₃ (4,4'-bpy)	DFT	3.927	10.545	11.406	90	1.891	2.172
	Experiment ¹	3.890	10.799	11.395	90	1.859	2.160
	DFT+ U ($U_{\rm eff}$ = 3.9)	11.983	11.114	3.425	90	2.318	1.975
FeCl ₂ (4,4'-bpy)	DFT	11.976	11.114	3.422	90	2.318	1.975
	Experiment ²	11.929	11.447	3.638	90	2.504	2.184
	DFT+ U ($U_{\rm eff}$ = 3.3)	3.859	10.656	11.313	90	1.877	2.115
VF ₃ (4,4'-bpy)	DFT	3.858	10.648	11.315	90	1.877	2.116
	Experiment ³	3.797	10.769	11.312	90	1.841	2.128
	DFT+ U ($U_{\rm eff}$ = 4.6)	10.483	11.415	3.941	90	1.834	2.175
MnF ₃ (4,4'-bpy)	DFT	10.474	11.412	3.943	90	1.835	2.174
	Experiment ⁴	10.703	11.383	3.941	90	1.793	2.160
MnCl ₂ (4,4'-bpy)	DFT+ U ($U_{\rm eff}$ = 4.6)	11.581	11.878	3.612	90	2.536	2.237
	DFT	11.202	11.884	3.377	90	2.331	2.018
	Experiment ⁵	11.641	11.955	3.678	90	2.552	2.276