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Fig. S1. Current output of PAN/PSSA (5:1) nanofiber fabric based MEG.

Fig. S2. Digital photos of the prepared large-area, flexible and deformable PAN/PSSA nanofiber 
fabric.



Fig. S3. SEM images of PSSA and PAN/PSSA nanofiber fabrics with different doping ratio. All the 
scale bars are 1 μm.
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Fig. S4. The difference in moisture harvest for electrospun PAN/PSSA (5:1) nanofiber fabric and 
casted PAN/PSSA (5:1) film.
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Fig. S5. FTIR spectra of PAN, PSSA and PAN/PSSA with different ratios.

Fig. S6. Voltage output of PAN:PSSA (5:1) nanofiber fabirc with thickness around (a) 61 μm, and 

(b) 260 μm. The thickness was controlled by changing electrospinning time from 2 h to 10 h.



Fig. S7. (a) Schematic diagram of ion-gradient-enhanced MEG with different pore on top electrode 
and (b) their voltage outputs. 

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu electrode

V
ol

ta
ge

 (V
)

Time (s)

Ni electrode

Fig. S8. Voltage outputs of PAN/PSSA of 5:1 under RH~80% and 25 oC with different top porous 
metal electrodes.



Fig. S9.  (a, b) SEM images and (c, d) voltage outputs of PAN/PSSA (5:1) nanofiber fabrics with 

different fiber diameters. (a, c) Average diameter around 115 nm. (b, d). Average diameter around 

206 nm. All the scale bars are 1 μm. The fiber diameter was adjusted by changing applied voltage 

in electrospinning process. The applied voltages were 13 kV and 20 kV for producing fibers with 

diameter of 206 nm and 115 nm, respectively.

Fig. S10. (a) Digital photo picture of assembled MEG and the top porous Al electrode. (b, c) SEM 

images of porous Al electrode before the long-term test of 40000 s and after the long-term test, and 

the surface morphology is without any change. All scale bars are 20 μm.



Fig. S11. Schematic diagram of home-built moisture circulating system.



Table S1. Summary of recent rising MEGs.
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Over 40000s 1.1 V 1.35 μA cm-1A
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