Electronic Supplementary Information

Design and Synthesis of Yellow- to Red-Emitting Gold(III) Complexes Containing Isomeric Thienopyridine and Thienoquinoline Moieties and Their Applications in Operationally Stable Organic Light-Emitting Devices

Lok-Kwan Li, † Cathay Chai Au-Yeung, † Man-Chung Tang, Shiu-Lun Lai, Wai-Lung Cheung, Maggie Ng, Mei-Yee Chan, * Vivian Wing-Wah Yam*

- [*] Dr. L.-K. Li, Ms. C. C. A.-Y., Dr. M.-C. Tang, Dr. S.-L. Lai, Mr. W.-L. Cheung, Dr. M. Ng, Dr. M.-Y. Chan,* Prof. V. W.-W. Yam*
 Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
 Fax: +(852) 2857-1586; Tel: +(852) 2859-2153
 E-mail: wwyam@hku.hk; chanmym@hku.hk
- † L.-K.L. and C.C.A.Y. contributed equally to this work.

Table of Contents

		Page
<u>Synthesis</u>		_
Scheme SI.	Synthetic route for the carbazolylgold(III) complexes.	5
Thermograv	<u>vimetric Analyses</u>	
Figure S1.	Thermogravimetric analysis (TGA) curves of 1–6 .	6
Table S1.	Thermal properties of 1–6.	6
Electrochem	listry	
Table S2.	Electrochemical data of 1–6.	7
Photophysic	al Properties	
Table S3.	Electronic absorption data of 1–6.	8
Figure S2.	Transient absorption difference spectra of 1 in degassed toluene at 298 K.	8
Figure S3.	Transient absorption difference spectra of 4 in degassed toluene at 298 K.	9
Figure S4.	Normalized PL spectra of 1–6 doped at 10 wt% and 1 doped at 5–20 wt% in MCP thin films at 298 K.	9
Figure S5.	Normalized PL spectra of 2 doped at 5–20 wt% in MCP thin films at 298 K.	10
Figure S6.	Normalized PL spectra of 3 doped at 5–20 wt% in MCP thin films at 298 K.	10
Figure S7.	Normalized PL spectra of 4 doped at 5–20 wt% in MCP thin films at 298 K.	11
Figure S8.	Normalized PL spectra of 5 doped at 5–20 wt% in MCP thin films at 298 K.	11
Figure S9.	Normalized PL spectra of 6 doped at $5-20$ wt% in MCP thin films at 298 K.	12
Figure S10.	Emission spectra of the thin film of 20 wt% 1 doped in MCP upon increasing the temperature from 320 to 370 K.	12
Figure S11.	Normalized emission spectra of 1 and 4 doped in different host materials at 10 wt% at 298 K.	13
Figure S12.	Normalized emission spectra of $[Au \{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thpy)\}Cl]$ and $[Au \{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thpy)\}Cl]$ doped at 5 wt% in MCP at 298 K.	14
Computatio	nal Studies	
Figure S13.	The optimized ground-state geometries (front view) with selected structural parameters of 1 , 3 , 4 and 6 .	15
Figure S14.	The optimized ground-state geometries (side view) of 1, 3, 4 and 6.	16
Table S4.	The first fifteen singlet excited states (S_n) of 1, 3, 4 and 6 computed by TDDFT/CPCM using toluene as the solvent.	17
Figure S15.	Simulated UV-vis spectrum of 1 computed by TDDFT/CPCM using toluene as the solvent.	19
Figure S16.	Simulated UV-vis spectrum of 3 computed by TDDFT/CPCM using toluene as the solvent.	19
Figure S17.	Simulated UV-vis spectrum of 4 computed by TDDFT/CPCM using toluene as the solvent.	20
Figure S18.	Simulated UV-vis spectrum of 6 computed by TDDFT/CPCM using toluene as the solvent.	20
Figure S19.	Spatial plots (isovalue = 0.03) of selected molecular orbitals of 1 at the	21

optimized ground-state geometry.

Figure S20.	Spatial plots (isovalue = 0.03) of selected molecular orbitals of 3 at the	21								
	optimized ground-state geometry.									
Figure S21.	Spatial plots (isovalue = 0.03) of selected molecular orbitals of 4 at the	22								
	optimized ground-state geometry.									
Figure S22.	Spatial plots (isovalue = 0.03) of selected molecular orbitals of 6 at the 2 optimized ground-state geometry.									
Figure S23.	Orbital energy diagram of 1, 3, 4 and 6.									
Figure S24.	The distances between the sulfur and hydrogen atoms in the <i>N</i> -heterocyclic moieties of $1, 3, 4$ and 6 at the optimized T ₁ geometries.	23								
Figure S25.	Plots of spin density (isovalue = 0.002) of the T ₁ of 1 , 3 , 4 and 6 .	24								
Table S5.	Relative energies of the optimized T_1 states of 1, 3, 4 and 6.	25								
Table S6.	Cartesian coordinates of the optimized ground-state geometry of 1.	26								
Table S7.	Cartesian coordinates of the optimized ground-state geometry of 3 .	27								
Table S8.	Cartesian coordinates of the optimized ground-state geometry of 4.	28								
Table S9.	Cartesian coordinates of the optimized ground-state geometry of 6.	29								
Table S10.	Cartesian coordinates of the optimized T_1 geometry of 1 computed by DFT/CPCM.	30								
Table S11.	Cartesian coordinates of the optimized T_1 geometry of 3 computed by DFT/CPCM.	31								
Table S12.	Cartesian coordinates of the optimized T_1 geometry of 4 computed by DFT/CPCM.	32								
Table S13.	Cartesian coordinates of the optimized T_1 geometry of 6 computed by DFT/CPCM.	33								
Table S14.	Cartesian coordinates of the optimized S_1 geometry of 1 computed by TDDFT/CPCM.	34								
Table S15.	Cartesian coordinates of the optimized T_1 geometry of 1 computed by TDDFT/CPCM.	35								

OLED Fabrication and Characterization

Figure S26.	Normalized EL spectra of the solution-processed devices based on $1-6$.	36			
Table S16.	Key parameters of solution-processed OLEDs based on 1–6.	37			
Figure S27.	EL spectra of vacuum-deposited devices based on 6.	38			
Table S17.	Key parameters of vacuum-deposited OLEDs based on 1–5.				
Figure S28.	Resonance structures of thieno[2,3- <i>c</i>]pyridine (1-thpy) and thieno[3,2- 4 <i>c</i>]pyridine (2-thpy) moleties in the cyclometalating ligands.				
Figure S29.	9. Relative luminance, L/L_0 , and driving voltage of the solution-processed device 4 based on 1 as a function of time projected at an initial luminance of 100 cd cm ⁻² .				
Table S18.	Lifetime data of devices based on $1-5$.	41			
Materials and	d reagents	42			
Physical mea	surements and instrumentation	42			
Synthesis	Synthesis				
Molecular or	Molecular orientation measurements				
Computation	Computational details				

OLED fabrication and measurements	51
NMR spectra	52
CSI-mass spectra and the corresponding simulated isotope patterns	61
References	63

Synthesis

Scheme S1. Synthetic route for the carbazolylgold(III) complexes.

Thermogravimetric Analyses

Figure S1. Thermogravimetric analysis (TGA) curves of (a) **1**, (b) **2**, (c) **3**, (d) **4**, (e) **5** and (f) **6**.

$T_d^a / {}^{\mathrm{o}}\mathrm{C}$
335
339
363
336
334
304

<i>Table S1.</i> Thermal properties of 1–	6
---	---

 \overline{a} T_d is defined as the decomposition temperature at which there is 5 wt% loss of the material.

Electrochemistry

	Oxidation	Reduction		
Complay	$E_{1/2}^{\text{ox}}$ / V vs. SCE ^b	$E_{1/2}^{red}$ / V vs. SCE	$E_{\rm HOMO}^{e}$	E_{LUMO}^{f}
Complex	$(\Delta E_{\rm p} / {\rm mV})^c$	$(\Delta E_{\rm p} / {\rm mV})$	/ eV	/ eV
	$[E_{\text{pa}} / \text{V} vs. \text{ SCE}]^d$			
1	[+0.81], [+1.30]	-1.46 (73)	-5.15	-2.88
2	+0.67 (84)	-1.45 (85)	-5.01	-2.89
3	[+0.82], [+1.31]	-1.27 (57)	-5.16	-3.07
4	[+0.80], [+1.29]	-1.52 (87)	-5.14	-2.82
5	+0.66 (68)	-1.52 (82)	-5.00	-2.82
6	[+0.80], [+1.30]	-1.31 (86)	-5.14	-3.03

Table S2. Electrochemical data of 1–6.^{*a*}

^{*a*} In CH₂Cl₂ solution with 0.1 M "Bu₄NPF₆ as supporting electrolyte at 298 K; working electrode, glassy carbon; scan rate=100 mV s⁻¹.

^b $E_{1/2} = (E_{pa} + E_{pc})/2$; E_{pa} and E_{pc} are the peak anodic and peak cathodic potentials, respectively.

^c
$$\Delta E_{\rm p} = (E_{\rm pa} - E_{\rm pc}).$$

 d E_{pa} refers to the anodic peak potential for the irreversible oxidation waves.

- ^e E_{HOMO} levels are calculated from the electrode potentials, i.e. $E_{\text{HOMO}} = -[E_{\text{pa}} (vs. \text{ Fc}^+/\text{Fc}) + 4.80] \text{ eV or}$ $E_{\text{HOMO}} = -[E_{1/2}^{\text{ox}} (vs. \text{ Fc}^+/\text{Fc}) + 4.80] \text{ eV}. \text{ E}^{\circ}(\text{Fc}^+/\text{Fc}) = +0.46 \text{ V} vs. \text{ SCE in CH}_2\text{Cl}_2 (0.1 \text{ M} \text{ }^{n}\text{Bu}_4\text{NPF}_6).$ From ref. 1.
- ^f E_{LUMO} levels are calculated from the electrode potentials, i.e. $E_{\text{LUMO}} = -[E_{1/2}^{\text{red}} (vs. \text{ Fc}^+/\text{Fc}) + 4.80] \text{ eV}.$ $\text{E}^{\circ}(\text{Fc}^+/\text{Fc}) = +0.46 \text{ V} vs. \text{ SCE in CH}_2\text{Cl}_2 (0.1 \text{ M} \text{ }^n\text{Bu}_4\text{NPF}_6).$ From ref. 1.

Photophysical Properties

Table S3.	Electronic absorption data of 1–6.
Complex	Absorption λ_{max} / nm (ε / mol ⁻¹ dm ³ cm ⁻¹)
1	305 (24515), 337 (11270), 351 (13584), 365 (14190), 410 (2590)
2	308 (26940), 339 (10950), 356 (12580), 370 (12140), 410 (2450)
3	304 (26180), 331 (16920), 366 (19755), 388 (16420), 427 (2028)
4	305 (43670), 340 (20580), 366 (24180), 376 (20230), 409 (5160)
5	307 (38920), 341 (21320), 352 (20880), 366 (19170), 408 (4320)
6	304 (43770), 340 (20980), 365 (24445), 393 (19640), 430 (4340)

Figure S2. Transient absorption difference spectra of 1 in degassed toluene at 298 K at decay times of 0–1.6 μs with time intervals of 200 ns. Inset: The decay trace of the absorptions monitored at 635 nm.

Figure S3. Transient absorption difference spectra of 4 in degassed toluene at 298 K at decay times of 0–1.6 μs with time intervals of 200 ns. Inset: The decay trace of the absorptions monitored at 620 nm.

Figure S4. (a) Normalized PL spectra of 1–6 doped at 10 wt% in MCP thin films at 298 K. (b) Normalized PL spectra of 1 doped at 5–20 wt% in MCP thin films at 298 K.

Figure S5. Normalized PL spectra of **2** doped at 5–20 wt% in MCP thin films at 298 K.

Figure S6. Normalized PL spectra of **3** doped at 5–20 wt% in MCP thin films at 298 K.

Figure S7. Normalized PL spectra of **4** doped at 5–20 wt% in MCP thin films at 298 K.

Figure S8. Normalized PL spectra of **5** doped at 5–20 wt% in MCP thin films at 298 K.

Figure S9. Normalized PL spectra of **6** doped at 5–20 wt% in MCP thin films at 298 K.

Figure S10. Emission spectra of the thin film of 20 wt% 1 doped in MCP upon increasing the temperature from 320 to 370 K.

Figure S11. Normalized emission spectra of (a) **1** and (b) **4** doped in different host materials at 10 wt% at 298 K.

Figure S12. Emission spectra of $[Au \{4-{}^{t}BuC^{C}(4-{}^{t}BuC_{6}H_{4})^{N}_{(1-thpy)}\}Cl]$ and $[Au \{4-{}^{t}BuC^{C}(4-{}^{t}BuC_{6}H_{4})^{N}_{(2-thpy)}\}Cl]$ doped at 5 wt% in MCP at 298 K.

Computational Studies

Figure S13. The optimized ground-state geometries (front view) with selected structural parameters of (a) 1, (b) 3, (c) 4 and (d) 6 at the PBE0 level of theory. The bond lengths and angles are in Angstroms and degrees, respectively. All hydrogen atoms are omitted for clarity.

Figure S14. The optimized ground-state geometries (side view) of (a) 1, (b) 3, (c) 4 and (d) 6 at the PBE0 level of theory. The angle in red indicates the dihedral angle between the plane of the *N*-heterocycle and that of the central phenyl ring.

Complex	$\mathbf{S}_{\mathbf{n}}$	Excitation ^a (Coefficient) ^b	Vertical excitation wavelength / nm	f^c	Character ^d
1	S_1	$H \rightarrow L(0.71)$	565	0.005	LLCT
	S_2	$H-1\rightarrow L(0.71)$	440	0.000	LLCT
	S_3	$H-2\rightarrow L(0.70)$	400	0.067	ILCT/IL
	S_4	$H \rightarrow L + 1 (0.70)$	396	0.004	LLCT
	S_5	$H \rightarrow L + 2(0.70)$	364	0.010	LLCT
	S_6	$H \rightarrow L + 3(0.67)$	354	0.044	LLCT
	S_7	$H-3\rightarrow L(0.66)$	349	0.096	IL/ILCT
	S_8	$H-1 \rightarrow L+1 (0.70)$	330	0.000	LLCT
	S_9	H→L+5 (0.58)	320	0.068	IL
		H→L+4 (−0.36)			LLCT
	S_{10}	$H-4\rightarrow L(0.51)$	317	0.018	LLCT
		$H-2\rightarrow L+1$ (0.41)			IL/ILCT
	S_{11}	H−4→L (0.48)	315	0.080	LLCT
		H−2→L+1 (−0.44)			IL/ILCT
	S_{12}	H−6→L (0.51)	308	0.090	IL/ILCT
		H−5→L (0.31)			ILCT/IL
	S ₁₃	H−1→L+2 (0.66)	308	0.009	LLCT
	S_{14}	H→L+4 (0.58)	303	0.008	LLCT
		H→L+5 (0.34)			IL
	S_{15}	H−5→L (0.52)	302	0.168	ILCT/IL
		H−6→L (−0.41)			IL/ILCT
3	S1	$H \rightarrow L(0.71)$	596	0.000	LLCT
U	\mathbf{S}_{1}	$H \rightarrow L(0.71)$	459	0.000	
	S_2 S_3	$H = 2 \rightarrow L(0.70)$	421	0.046	ILCT/IL
	S_4	$H \rightarrow L+1 (0.69)$	388	0.001	LLCT
	S5	$H \to L+3 (0.66)$	371	0.090	LLCT
	25 S6	$H=3\rightarrow L(0.67)$	367	0.159	IL/ILCT
	S7	$H \rightarrow L+2 (0.68)$	361	0.002	LLCT
	\mathbf{S}_{8}	$H=5\rightarrow L(0.44)$	338	0.098	IL/ILCT
	0	$H-6\rightarrow L(-0.43)$			IL/ILCT
	S 9	$H-4\rightarrow L(0.62)$	329	0.010	LLCT
	S_{10}	$H-6\rightarrow L(0.50)$	327	0.175	IL/ILCT
		$H-5\rightarrow L(0.42)$			IL/ILCT
	S_{11}	$H-1 \rightarrow L+1 (0.70)$	325	0.001	LLCT
	S_{12}	$H \rightarrow L + 6 (0.62)$	318	0.055	IL
	S_{13}	$H-2 \rightarrow L+1 (0.54)$	313	0.069	IL
		$H - 7 \rightarrow L(-0.37)$			ILCT/IL
	S_{14}	$H-1 \rightarrow L+2 (0.55)$	308	0.001	LLCT
		H−1→L+3 (−0.43)			LLCT
	S_{15}	H−7→L (0.54)	308	0.119	ILCT/IL
		H−2→L+1 (0.34)			IL
Α	S		540	0.010	IICT
4	51 S.	$\Pi \rightarrow L(0.70)$ $H_{-1} \downarrow (0.71)$	540 171	0.010	
	52	$11 1 \rightarrow L(0.71)$	724	0.000	

Table S4.The first fifteen singlet excited states (Sn) of 1, 3, 4 and 6 computed by
TDDFT/CPCM using toluene as the solvent.

	S_3	H→L+1 (0.70)	418	0.002	LLCT
	S_4	$H=2\rightarrow L(0.70)$	391	0.097	ILCT/IL
	S_5	$H\rightarrow L+2(0.70)$	367	0.006	LLCT
	S_6	$H \rightarrow L + 3(0.69)$	350	0.035	LLCT
	S_7	$H-1 \rightarrow L+1 (0.70)$	346	0.001	LLCT
	S_8	H−3→L (0.67)	343	0.200	IL/ILCT
	S 9	H−2→L+1 (0.65)	322	0.073	ILCT/IL
	S_{10}	H→L+5 (0.67)	319	0.071	IL
	S_{11}	$H-1 \rightarrow L+2 (0.70)$	310	0.001	LLCT
	S ₁₂	$H-4\rightarrow L(0.55)$	309	0.060	LLCT
		H−5→L (−0.39)			IL/ILCT
	S ₁₃	H−5→L (0.54)	307	0.025	IL/ILCT
		H−4→L (0.40)			LLCT
	S_{14}	H→L+4 (0.67)	303	0.003	LLCT
	S_{15}	H−6→L (0.66)	298	0.049	ILCT
6	S_1	$H \rightarrow L(0.71)$	571	0.000	LLCT
	S_2	H−1→L (0.71)	443	0.001	LLCT
	S_3	H−2→L (0.69)	407	0.058	ILCT/IL
	S_4	H→L+1 (0.70)	406	0.005	LLCT
	S_5	H→L+2 (0.69)	386	0.002	LLCT
	S_6	H→L+3 (0.69)	368	0.057	LLCT
	S_7	H−3→L (0.67)	360	0.223	IL/ILCT
	S_8	H−1→L+1 (0.70)	340	0.000	LLCT
	S_9	H−5→L (0.55)	337	0.018	IL/ILCT
		H−4→L (0.32)			LLCT
	S_{10}	H−1→L+2 (0.69)	323	0.001	LLCT
	S_{11}	H−4→L (0.55)	321	0.007	LLCT
	S_{12}	H−6→L (0.34)	319	0.101	IL/ILCT
		H→L+5 (−0.33)			IL
		H−2→L+1 (−0.32)			ILCT/IL
	S ₁₃	H→L+5 (0.59)	318	0.051	IL
	S_{14}	H−6→L (0.47)	314	0.126	IL/ILCT
		H−2→L+1 (0.44)			ILCT/IL
	S ₁₅	H−2→L+2 (0.49)	307	0.003	IL
		H−2→L+3 (0.31)			IL

^{*a*} Orbitals involved in the major excitation (H = HOMO and L = LUMO).

^b The coefficients in the configuration interaction (CI) expansion that are less than 0.3 are not listed.

^{*c*} Oscillator strengths.

^d Character of the transition.

Figure S15. Simulated UV-vis spectrum of 1 computed by TDDFT/CPCM using toluene as the solvent.

Figure S16. Simulated UV-vis spectrum of **3** computed by TDDFT/CPCM using toluene as the solvent.

Figure S17. Simulated UV-vis spectrum of 4 computed by TDDFT/CPCM using toluene as the solvent.

Figure S18. Simulated UV-vis spectrum of 6 computed by TDDFT/CPCM using toluene as the solvent.

Figure S19. Spatial plots (isovalue = 0.03) of selected molecular orbitals of 1 at the optimized ground-state geometry.

Figure S20. Spatial plots (isovalue = 0.03) of selected molecular orbitals of **3** at the optimized ground-state geometry.

Figure S21. Spatial plots (isovalue = 0.03) of selected molecular orbitals of 4 at the optimized ground-state geometry.

Figure S22. Spatial plots (isovalue = 0.03) of selected molecular orbitals of **6** at the optimized ground-state geometry.

Figure S23. Orbital energy diagram of 1, 3, 4 and 6.

Figure S24. The distances between the sulfur and hydrogen atoms in the *N*-heterocyclic moieties of (a) **1**, (b) **3**, (c) **4** and (d) **6** at the optimized T₁ geometries.

Figure S25. Plots of spin density (isovalue = 0.002) of the T_1 states of (a) 1, (b) 3, (c) 4 and (d) 6.

Complex	$\Delta E(\mathrm{T_{1}-S_{0}}) \ / \ \mathrm{cm^{-1}} \ (\lambda \ / \ \mathrm{nm})^{a}$
1	17487 (572)
3	15830 (632)
4	17947 (557)
6	16353 (612)

Table S5. Relative energies of the optimized T_1 states of 1, 3, 4 and 6.

 $\overline{}^{a}$ Energy difference between the T₁ and S₀ states at the corresponding optimized geometry in toluene.

Table	e S6.	Carte	sian coord	inates of the	optimiz	zed	ground-state	e geometry	of 1 .
1	С	-0.639759	0.033819	-0.027176	61	Н	3.033058	0.540681	-2.549325
2	С	-2.860845	-0.852269	-0.059898	62	С	6.647636	-0.527716	-1.465340
3	С	-3.366376	0.454239	-0.000291	63	С	4.480078	-2.159788	3.188811
4	С	-2.486009	1.549828	0.046930	64	Н	2.518588	-1.532961	2.542128
5	С	-1.106930	1.347363	0.039484	65	С	6.327011	-1.823254	1.652601
6	Н	-3.572544	-1.670279	-0.057402	66	С	6.420180	0.052502	-2.705982
7	Н	-2.897372	2.555599	0.069157	67	Н	4.965895	0.887795	-4.063132
8	С	-0.011356	2.327306	0.086180	68	Н	7.652389	-0.821328	-1.170959
9	С	-0.133535	3.711032	0.144490	69	С	5.846672	-2.264913	2.878514
10	С	1.293194	1.764766	0.067771	70	Н	4.125753	-2.503485	4.157112
11	С	1.002092	4.522579	0.179922	71	Н	7.385664	-1.900399	1.416535
12	Н	-1.118133	4.172294	0.160725	72	Н	7.249206	0.214592	-3.388799
13	С	2.410466	2.579107	0.105393	73	Н	6.530601	-2.690507	3.607128
14	С	2.288986	3.982093	0.158649	74	Ν	3.344238	-0.627620	-0.002191
15	Н	0.865042	5.597665	0.222781	75	С	-0.773223	-2.374617	-0.145059
16	Н	3.394481	2.120947	0.084421	76	С	-1.338985	-3.654624	-0.237626
17	С	-4.829830	0.676933	0.015713	77	С	-0.517415	-4.808987	-0.298800
18	С	-5.401416	1.681562	0.808359	78	С	1.375769	-3.370740	-0.181606
19	С	-5.692668	-0.104788	-0.757996	79	С	0.873769	-4.650384	-0.268345
20	С	-6.773703	1.887567	0.821337	80	С	-1.281110	-6.014971	-0.392237
21	Н	-4.764555	2.292628	1.442462	81	С	-2.616132	-5.775522	-0.403971
22	С	-7.068948	0.105898	-0.739593	82	Н	2.441220	-3.167150	-0.155545
23	Н	-5.283042	-0.874238	-1.407433	83	Н	1.542224	-5.502592	-0.313440
24	С	-7.644917	1.106054	0.048857	84	Н	-0.841834	-7.003495	-0.448399
25	Н	-7.173292	2.672427	1.458083	85	Н	-3.416935	-6.501299	-0.467769
26	Н	-7.693894	-0.522276	-1.365417	86	С	-1.477204	-1.079979	-0.080395
27	Au	1.302430	-0.251166	-0.020806	87	S	-3.021557	-4.097978	-0.303095
28	С	-9.151322	1.368668	0.093804	88	Ν	0.582375	-2.287195	-0.120438
29	С	-9.933134	0.415796	-0.814289					
30	Н	-9.796791	-0.630314	-0.520253					
31	Н	-11.002244	0.641479	-0.747194					
32	Н	-9.638507	0.520061	-1.863874					
33	С	-9.657340	1.185847	1.534348					
34	Н	-9.164443	1.872649	2.229040					
35	Н	-10.735014	1.377889	1.583371					
36	Н	-9.476855	0.164668	1.885770					
37	С	-9.430150	2.809775	-0.364467					
38	Η	-8.929600	3.543538	0.274557					
39	Н	-9.085279	2.967178	-1.391662					
40	Н	-10.505805	3.015968	-0.330524					
41	С	3.555092	4.840472	0.180235					
42	С	4.357763	4.585895	-1.107113					
43	H	5.279250	5.178901	-1.100292					
44	Η	4.637159	3.533302	-1.213965					
45	Η	3.776581	4.870504	-1.990629					
46	С	3.239764	6.336313	0.263693					
47	H	2.658293	6.678944	-0.598805					
48	H	2.685182	6.585257	1.174783					
49	H	4.174514	6.905954	0.278875					
50	С	4.411088	4.459344	1.399603					
51	H	3.862668	4.631459	2.331645					
52	H	4.712235	3.407928	1.374563					
53	H	5.322991	5.066346	1.423411					
54	C	4.256901	-0.342138	-0.993115					
55	C	4.049205	-1.180277	1.044442					
56	C	4.033826	0.242398	-2.247312					
57	C	5.569381	-0./26814	-0.597414					
58 50	C	3.5/2202	-1.020560	2.28/045					
39	C	5.433998	-1.2/6055	0./26442					
υu	U	J.1222U5	0.43409/	-3.00/939					

1	С	-0.779535	0.148314	0.042296	61	Н	2.603201	-0.091496	-2.818083
2	С	-3.023848	-0.674121	-0.014646	62	С	6.356174	0.390018	-1.783847
3	Ċ	-3.502127	0.641770	0.023987	63	С	4.765625	-0.381789	3.307639
4	С	-2.595718	1.712878	0.082646	64	Н	2.719539	-0.643690	2.667275
5	С	-1.223543	1.473556	0.082682	65	С	6.427409	0.052813	1.593679
6	Н	-3.754817	-1.466675	-0.118065	66	С	5.968446	0.472203	-3.114795
7	Н	-2.979445	2.727986	0.140562	67	Н	4.340404	0.369078	-4.525975
8	С	-0.120072	2.439875	0.126462	68	Н	7.398250	0.525639	-1.504651
9	С	-0.225400	3.824954	0.194848	69	С	6.096011	-0.132464	2.929462
10	С	1.175185	1.865677	0.098306	70	Н	4.528321	-0.521717	4.358920
11	С	0.919103	4.622630	0.235523	71	Н	7.457331	0.246397	1.303770
12	Н	-1.204641	4.296865	0.218920	72	Н	6.709352	0.673127	-3.883186
13	С	2.304082	2.662700	0.140678	73	Н	6.869109	-0.083930	3.690851
14	С	2.198833	4.065823	0.209953	74	Ν	3.243366	-0.304754	-0.081033
15	Η	0.795210	5.698797	0.288821	75	С	-0.988806	-2.261089	-0.006979
16	Н	3.283682	2.198142	0.117707	76	С	-1.662966	-3.507583	0.086889
17	С	-4.959513	0.898053	-0.002666	77	С	-0.962664	-4.720669	0.035151
18	С	-5.492666	1.977242	-0.720550	78	С	1.077520	-3.415918	-0.173392
19	С	-5.854699	0.074604	0.686382	79	С	-1.817485	-5.855475	0.166597
20	С	-6.859898	2.213638	-0.744558	80	С	0.452034	-4.692201	-0.119207
21	Н	-4.829489	2.624389	-1.288487	81	С	2.480833	-3.352742	-0.312673
22	С	-7.225600	0.316694	0.657892	82	С	-3.119596	-5.500141	0.326019
23	Н	-5.474879	-0.754603	1.277872	83	Н	-1.481154	-6.884306	0.151949
24	С	-7.763536	1.390580	-0.057012	84	С	1.241822	-5.857602	-0.206554
25	Н	-7.229404	3.056462	-1.322745	85	Н	2.953937	-2.376957	-0.348331
26	Н	-7.876901	-0.346575	1.217033	86	С	3.226399	-4.506652	-0.396524
27	Au	1.165816	-0.150192	-0.015301	87	Н	-3.972819	-6.153933	0.453497
28	С	-9.263255	1.687185	-0.112969	88	С	2.607891	-5.769413	-0.344109
29	С	-10.083127	0.686316	0.705518	89	Н	0.761122	-6.829681	-0.166718
30	Н	-9.808495	0.705394	1.765493	90	Н	4.304404	-4.436815	-0.505317
31	Н	-11.145791	0.939628	0.634686	91	Н	3.207409	-6.671837	-0.412388
32	Η	-9.962093	-0.337606	0.336342	92	С	-1.646073	-0.940385	0.013513
33	С	-9.525634	3.095971	0.444484	93	S	-3.364838	-3.797348	0.319135
34	Н	-8.998074	3.864789	-0.128079	94	Ν	0.350857	-2.249117	-0.104993
35	Н	-10.596355	3.325186	0.403392					
36	Н	-9.200892	3.170738	1.487454					
37	С	-9.739689	1.621003	-1.573603					
38	Н	-9.217006	2.345989	-2.204827					
39	Н	-9.571325	0.624617	-1.995213					
40	Н	-10.811937	1.839210	-1.631673					
41	С	3.477361	4.905097	0.250133					
42	С	4.298633	4.640195	-1.023284					
43	Н	5.219607	5.233771	-1.006270					
44	Н	4.582328	3.587420	-1.115566					
45	Н	3.731805	4.916884	-1.918451					
46	С	3.181179	6.405014	0.329698					
47	H	2.615306	6.755137	-0.540214					
48	Н	2.618622	6.661778	1.233688					
49	H	4.123279	6.961891	0.357068					
50	С	4.307861	4.509384	1.482843					
51	H	3.747285	4.689065	2.406220					
52	H	4.593872	3.453458	1.461488					
53	H	5.228037	5.103100	1.521805					
54	C	4.028079	-0.046569	-1.184659					
55	С	4.074946	-0.267775	1.017558					
56	С	3.643267	0.038647	-2.528937					
57	С	5.388811	0.132622	-0.807070					
58	C	3./4/021	-0.452895	2.366785					
59	C	5.419219	-0.010904	0.626501					
60	С	4.622122	0.298386	-3.4/8/27					

Table S7.	Cartesian coordinates of the optimized ground-state geometry of 3 .	

1000	E D0.	Carte			opunn	LCU	giound-stat	2 geometry	01 - .
1	С	-0.676292	0.063422	-0.098879	61	н	3.073169	0.440648	-2.537836
2	C	-2.890350	-0.830908	-0.071301	62	C	6.658959	-0.517835	-1.271080
3	c	-3 401115	0.474020	-0.035059	63	c	1 3/0969	_1 002108	3 30/025
1	c	-2 527451	1 575457	-0.040127	64	ц Ц	2 405280	-1 338868	2 647797
-	c	1 140405	1 277142	-0.040127	64		2.405200	1 622565	1 004205
5	C II	-1.146405	1.3//142	-0.058288	60	c	6.244549	-1.033303	1.904393
0	H	-3.595552	-1.64//04	0.006277	00		6.466524	-0.013338	-2.550474
/	н	-2.943394	2.5/9584	-0.034996	67	H	5.053433	0.723523	-4.002/16
8	C	-0.058372	2.364061	-0.034026	68	H	7.655931	-0./81369	-0.926153
9	С	-0.189307	3.748245	-0.024762	69	С	5.727258	-2.008391	3.137480
10	С	1.249220	1.809199	-0.020995	70	Η	3.966152	-2.192960	4.369341
11	С	0.941191	4.567480	-0.008132	71	Η	7.311362	-1.711317	1.708787
12	Н	-1.176642	4.203806	-0.034289	72	Η	7.318964	0.119192	-3.213022
13	С	2.361387	2.631210	-0.002354	73	Η	6.390228	-2.382128	3.912428
14	С	2.231360	4.034411	0.000348	74	Ν	3.308014	-0.573328	0.082525
15	Η	0.797536	5.642559	-0.004495	75	С	-0.791876	-2.351600	-0.176649
16	Н	3.348251	2.178716	0.002232	76	С	-1.354683	-3.637087	-0.345176
17	С	-4.864799	0.688558	0.019063	77	С	-0.479456	-4.753987	-0.309336
18	С	-5.420306	1.702003	0.812015	78	С	1.370710	-3.315550	-0.050460
19	С	-5.744218	-0.109647	-0.718203	79	С	0.896385	-4.605964	-0.150592
20	С	-6.793021	1.899409	0.861144	80	С	-2.833422	-5.399226	-0.687789
21	Н	-4.769363	2.326964	1.417649	81	Н	2.428943	-3.095925	0.045950
22	С	-7.120929	0.092257	-0.663713	82	Н	1.574996	-5.450261	-0.124198
23	Н	-5.347233	-0.884244	-1.369467	83	Н	-3.739139	-5.961996	-0.871673
24	С	-7.680752	1.100500	0.125987	84	С	-1.506426	-1.058182	-0.127301
25	Н	-7.179601	2.691622	1.496808	85	Ν	0.556864	-2.246917	-0.061458
26	н	-7.759382	-0.548619	-1.262458	86	С	-2.711215	-4.053792	-0.580875
27	A 11	1 266281	-0 208200	-0 026213	87	н	-3 556840	-3 394111	-0 702294
28	C	-9 186960	1 354495	0 209917	88	g	-1 331287	-6 244854	-0 518285
29	C	-9 987995	0 383051	-0 660989	00	0	1.001207	0.211001	0.010200
30	ц	-9.836563	-0 657610	-0 355177					
21	11	11 056205	-0.037010	0.555177					
33	и П	-9 724161	0.003133	-1.720049					
22		- 9.724101	1 100505	1 666064					
22	C II	-9.650403	1.190585	1.000904					
24	п	-9.142292	1.376960	2.330703					
35	н	-10.727432	1.3/6860	1.743986					
36	н	-9.453387	0.1/5996	2.028457					
37	C	-9.488121	2.786694	-0.261939					
38	н	-8.9/4566	3.533203	0.351478					
39	Н	-9.173570	2.930538	-1.300790					
40	Н	-10.563706	2.986725	-0.200547					
41	С	3.492202	4.900746	0.003451					
42	С	4.310560	4.603743	-1.264785					
43	Н	5.227939	5.203084	-1.270345					
44	Н	4.598348	3.549941	-1.328800					
45	Н	3.737268	4.850834	-2.164597					
46	С	3.167484	6.396697	0.028003					
47	Η	2.593020	6.703539	-0.852489					
48	Н	2.602095	6.675910	0.923536					
49	Н	4.098765	6.972184	0.031538					
50	С	4.336862	4.570142	1.245281					
51	Н	3.777258	4.773410	2.164311					
52	Н	4.643974	3.520295	1.262481					
53	Н	5.245074	5.183025	1.256411					
54	С	4.251565	-0.334849	-0.891830					
55	С	3.982209	-1.055194	1.183291					
56	С	4.065928	0.173003	-2.184919					
57	С	5.553448	-0.679652	-0.430120					
58	С	3.467690	-1.428061	2.433036					
59	Ċ	5.378056	-1.152515	0.918291					
60	С	5.180662	0.329188	-2.997958					

Table S8. Cartesian coordinates of the optimized ground-state geometry of 4.

1000	C D / .	Curte			opunn	Lea	Stoulia Stat	e geometry	01 0.
1	С	-0.809575	0.190917	0.129088	61	Н	2.485203	0.268432	-2.828886
2	С	-3.040034	-0.664757	0.024180	62	С	6.278652	0.575919	-1.879446
3	С	-3.535506	0.645273	0.047837	63	С	4.838829	-0.686494	3.158088
4	С	-2.646480	1.728975	0.146383	64	Н	2.767304	-0.840267	2.567487
5	С	-1.270859	1.509586	0.174799	65	С	6.452665	-0.110927	1.440172
6	Н	-3.749742	-1.475139	-0.079878	66	С	5.850029	0.801872	-3.180895
7	Н	-3.044361	2.740331	0.148555	67	Н	4.175527	0.871999	-4.538826
8	С	-0.177157	2.487401	0.221955	68	Н	7.331790	0.663920	-1.623614
9	С	-0.294483	3.870055	0.314402	69	С	6.161516	-0.426468	2.760780
10	С	1.123785	1.926221	0.176775	70	Н	4.633061	-0.929412	4.197204
11	С	0.843213	4.677220	0.364152	71	Н	7.476695	0.090871	1.135330
12	Н	-1.277828	4.332537	0.351605	72	Н	6.569781	1.068058	-3.949560
13	С	2.245610	2.732067	0.230482	73	Н	6.960311	-0.472496	3.495330
14	С	2.127937	4.132842	0.324827	74	Ν	3.208251	-0.231583	-0.149958
15	Н	0.709824	5.751163	0.436238	75	С	-0.981063	-2.219859	0.096405
16	Н	3.228653	2.275457	0.193779	76	С	-1.636102	-3.464989	0.346076
17	С	-4.993929	0.886103	-0.037905	77	С	-0.901140	-4.644942	0.177014
18	С	-5.606760	1.890967	0.722725	78	С	1.066614	-3.343703	-0.305225
19	С	-5.809477	0.124137	-0.879431	79	С	0.464871	-4.628600	-0.192278
20	С	-6.973833	2.115816	0.640822	80	С	2.438530	-3.266050	-0.627273
21	Н	-5.007868	2.487780	1.405631	81	С	-3.209336	-5.065534	0.948347
22	С	-7.180653	0.354149	-0.956620	82	C	1.240139	-5.786782	-0.410189
23	н	-5.365199	-0.643/99	-1.50/534	83	н	2.896593	-2.285580	-0.703462
24	C	-/./9806/	1.354300	-0.200092	84	U U	3.1/2540	-4.412113	-0.834359
20	п	-7.407171	2.900089	1 622525	00	п	-4.116015	-5.540181	1.2930/9
20	л Л.1	1 135545	-0.236317	-0.000729	87	U U	2.374032	-5.002039	-0.324485
28	C	-9 300324	1 637314	-0 259672	88	ц	4 225607	-4 331387	-1 085561
29	C	-10 027495	0 705630	-1 232820	89	н	3 164857	-6 576899	-0 896378
30	н	-9 926043	-0 345559	-0 942820	90	C	-1 659826	-0 910034	0 097857
31	Н	-11.095668	0.945180	-1.239220	91	N	0.338130	-2.188310	-0.142723
32	н	-9.657407	0.817811	-2.257390	92	C	-2.967633	-3.737655	0.815361
33	С	-9.910251	1.445196	1.138814	93	н	-3.695508	-2.990932	1.096279
34	Н	-9.459126	2.117106	1.875213	94	S	-1.847431	-6.045797	0.526848
35	Н	-10.986065	1.651693	1.113479					
36	Н	-9.768815	0.417609	1.489507					
37	С	-9.527228	3.087136	-0.718991					
38	Н	-9.064108	3.806881	-0.037243					
39	Н	-9.108163	3.251314	-1.717116					
40	Н	-10.599846	3.307499	-0.758974					
41	С	3.398912	4.983011	0.372473					
42	С	4.211464	4.751520	-0.913079					
43	Н	5.128246	5.351394	-0.891010					
44	Н	4.501565	3.703019	-1.030818					
45	Н	3.635012	5.043231	-1.797249					
46	С	3.089766	6.478166	0.485291					
47	Η	2.514785	6.841100	-0.373300					
48	Н	2.531152	6.710897	1.398209					
49	Н	4.026950	7.042998	0.517751					
50	С	4.243441	4.570013	1.589765					
51	H	3.689138	4.724920	2.521380					
52	H	4.539300	3.517633	1.543704					
53	Н	5.158326	5.1/1464	1.633444					
54	C	3.962308	0.121539	-1.248385					
55	C	4.075449	-0.323350	0.917161					
50 57	C	3.33643U	0.350019	-2.30341/					
ر ر 5 م	C	J.JJ0230 3 788252	U.230143	-U.SUID/D 2 251/66					
59	c	5 411017	-0 053950	0 507831					
60	C	4.489346	0.689298	-3.514501					
~ ~	-			0.011001					

Table S9. Cartesian coordinates of the optimized ground-state geometry of 6.

Table S10.Cartesian coordinates of the optimized T1 geometry of 1 computed by
DFT/CPCM.

1	С	-0.649779	0.013854	-0.015925	61	Н	2.877461	0.190610	-2.612764
2	С	-2.870397	-0.859426	-0.038869	62	С	6.593272	-0.627672	-1.619816
3	С	-3.362855	0.447906	-0.005895	63	С	4.651759	-1.715644	3.307611
4	С	-2.480507	1.550026	0.023639	64	Н	2.648449	-1.233317	2.627493
5	С	-1.104175	1.330901	0.023315	65	С	6.448452	-1.522478	1.658929
6	Н	-3.586990	-1.673604	-0.019202	66	С	6.259541	-0.212498	-2.921639
7	н	-2 883559	2 558721	0 018476	67	н	4 719211	0 397669	-4 293357
, o	C	-0.008312	2 310617	0.054655	69	ц Ц	7 625400	-0 847524	-1 36/152
0	c	0 125051	2.510017	0.004055	60		6 000720	1 016007	2 0504132
10	C	-0.133931	1 741005	0.08/301	09		0.000739	-1.010027	2.959450
10	C	1.294450	1.741905	0.050774	70	н	4.340606	-1.948903	4.320541
11	C	0.995575	4.513276	0.114351	/1	н	7.502300	-1.60/128	1.411551
12	Н	-1.123158	4.149770	0.091079	72	Н	7.046353	-0.115925	-3.663426
13	С	2.405092	2.571515	0.080159	73	Η	6.721736	-2.128912	3.708683
14	С	2.282623	3.975779	0.110870	74	Ν	3.387409	-0.623853	0.003927
15	Н	0.853358	5.588399	0.137975	75	С	-0.794723	-2.383658	-0.088983
16	Н	3.398218	2.129855	0.078115	76	С	-1.335512	-3.683403	-0.148064
17	С	-4.825617	0.678635	0.003668	77	С	-0.523649	-4.836229	-0.181129
18	С	-5.393451	1.713386	0.760462	78	С	1.387091	-3.387563	-0.105623
19	С	-5.696485	-0.123162	-0.741012	79	С	0.895676	-4.659048	-0.156890
20	С	-6.764827	1.927546	0.769007	80	С	-1.279711	-6.037626	-0.241646
21	Н	-4.751417	2.343100	1.370680	81	С	-2.628332	-5.824751	-0.256645
22	C	-7 071837	0 094379	-0 727005	82	н	2 457487	-3 205285	-0 091844
22	ц Ц	-5 2011037	-0.918006	-1 361658	93	и П	1 56070/	-5 507671	-0 184543
23		-3.291103	1 124266	-1.301030	0.0	11	0.001711	-3.307071	-0.104343
24	C II	-7.642139	1.124200	0.026565	84	н	-0.831/11	-7.024982	-0.2/333/
25	н	-7.158855	2./36/14	1.3/8/64	85	н	-3.426273	-6.5531/0	-0.298222
26	Н	-7.700691	-0.553260	-1.328932	86	С	-1.481393	-1.122940	-0.052302
27	Au	1.280590	-0.293964	-0.008243	87	S	-3.019447	-4.134943	-0.197353
28	С	-9.147442	1.395249	0.065965	88	Ν	0.609422	-2.273892	-0.070434
29	С	-9.935695	0.417266	-0.809351					
30	Н	-9.803043	-0.619289	-0.481852					
31	Η	-11.003873	0.649828	-0.748220					
32	Н	-9.641548	0.485615	-1.862025					
33	С	-9.651897	1.260920	1.512354					
34	Н	-9.152829	1.966496	2.183481					
35	Н	-10.728648	1.460016	1.558456					
36	Н	-9.475141	0.250493	1.895349					
37	С	-9.422682	2.821823	-0.437428					
38	н	-8 916606	3 573371	0 176114					
30	и П	-9 079771	2 9//539	_1 470053					
10	11	10 107/01	2.944339	-1.470033					
40	п	-10.49/401	3.034114	-0.407234					
41	C	3.546209	4.8393//	1 100000					
42	C	4.3/9/02	4.5592//	-1.126203					
43	Н	5.294469	5.162996	-1.118860					
44	Н	4.673656	3.507233	-1.194685					
45	Η	3.813832	4.809349	-2.029756					
46	С	3.225405	6.336002	0.174117					
47	Н	2.656904	6.652505	-0.706666					
48	Н	2.653263	6.605941	1.067963					
49	Н	4.157448	6.910401	0.190947					
50	С	4.378368	4.494921	1.382171					
51	Н	3.809363	4.690482	2.297009					
52	Н	4.679646	3.442905	1.392345					
53	н	5.289307	5.103714	1.410261					
54	Ċ	4 240275	-0 449052	-1 059306					
55	c	1 1/5767	_1 027700	1 077026					
55	c	3.007210	-1.02//00	1.0//030					
56	C	3.90/312	-0.034921	-2.352895					
57	С	5.581554	-0./44513	-0.688317					
58	С	3.700075	-1.318266	2.370606					
59	С	5.519232	-1.127349	0.718176					
60	С	4.941075	0.078594	-3.280328					

Table S11.Cartesian coordinates of the optimized T_1 geometry of 3 computed by
DFT/CPCM.

1	C	_0 813210	0 205539	_0 117515	61	ц	2 919201	0 703321	-2 575568
2	c	2 004200	0.200000	0.117000	60		C E02000	0.155524	1 100070
2	C	-3.004389	-0.736641	-0.11/002	62	C	6.585099	1 251646	-1.188270
3	C	-3.542548	0.552515	-0.051502	63	C	4.309137	-1.351646	3.368406
4	С	-2.695582	1.676706	0.003500	64	H	2.342511	-1.125623	2.481785
5	С	-1.312286	1.503990	-0.034054	65	С	6.221393	-0.733057	1.974625
6	Н	-3.689326	-1.571840	-0.218346	66	С	6.334462	0.936840	-2.488650
7	Н	-3.128124	2.667614	0.108983	67	Η	4.878023	1.422133	-3.995661
8	С	-0.254467	2.517589	0.052619	68	Η	7.602085	0.381606	-0.822604
9	С	-0.434784	3.891701	0.158003	69	С	5.686860	-1.211360	3.184022
10	С	1.066211	1.996808	0.044805	70	Н	3.930117	-1.724982	4.314007
11	С	0.663210	4.748331	0.260378	71	Н	7.295774	-0.632723	1.854035
12	Н	-1.438495	4.309806	0.162466	72	Н	7.173009	1.216558	-3.118904
13	С	2.143290	2.862291	0.154631	7.3	Н	6.361713	-1.477642	3.991638
14	C	1 968274	4 256846	0 264132	74	N	3 256972	-0 163709	0 024491
15	ц	0 480731	5 814522	0.341091	75	Ċ	-0 884422	-2 193447	-0 163691
16	11	2 1520/7	2 462260	0.156540	75	c	1 411500	2.100065	0.103091
17	п	5.132047	2.405200	0.130340	70	c	-1.411398	-3.480085	0.049300
10	C	-5.011/90	0./35353	-0.040384	77	C	-0.616912	-4.636448	-0.006746
18	C	-5.615/0/	1.809237	-0.709148	78	C	1.2/194/	-3.181316	-0.591/94
19	С	-5.851510	-0.152724	0.638952	79	С	-1.345549	-5.819210	0.295230
20	С	-6.993217	1.979158	-0.695723	80	С	0.767434	-4.499803	-0.388983
21	H	-4.997345	2.506471	-1.268311	81	С	2.593233	-3.052382	-1.059135
22	С	-7.233002	0.021217	0.647410	82	С	-2.659078	-5.582436	0.574763
23	Н	-5.417288	-0.982227	1.190997	83	Η	-0.915968	-6.814369	0.305217
24	С	-7.839834	1.090336	-0.017878	84	С	1.613717	-5.599703	-0.587298
25	Н	-7.416527	2.821835	-1.236507	85	Η	2.962857	-2.064110	-1.299692
26	Н	-7.837639	-0.693072	1.196313	86	С	3.410537	-4.156590	-1.248864
27	Au	1.132038	-0.039129	-0.134816	87	Н	-3.430940	-6.296147	0.828048
28	С	-9.353238	1.314657	-0.030443	88	С	2.929221	-5.442474	-0.999980
29	С	-10.104616	0.245030	0.766632	89	Н	1.220686	-6.598514	-0.420205
30	Н	-9.806256	0.238442	1.820323	90	Н	4.425317	-4.011371	-1.609326
31	н	-11.179918	0.447560	0.728243	91	Н	3.564778	-6.310349	-1.146715
32	н	-9 941604	-0 757280	0 356654	92	C	-1 608859	-0 948491	-0 130337
33	C	-9 670924	2 686914	0 586140	93	s	-3 053414	-3 896511	0 482247
34	ц	-9 192369	3 501019	0.033383	94	N	0 493083	-2 063241	-0 371373
25	11	-10 752062	2 966074	0.033303	54	IN	0.495005	-2.003241	-0.3/13/3
20	п	-10.752005	2.0000/4	1 624414					
20	п	-9.320883	2.737740	1.024414					
20	C	-9.861019	1.2/9523	-1.481485					
38	н	-9.389029	2.052434	-2.095596					
39	н	-9.653646	0.309208	-1.9444/2					
40	Н	-10.943895	1.446044	-1.508285					
41	С	3.199134	5.159716	0.377020					
42	С	4.070449	4.992598	-0.879447					
43	Н	4.961730	5.626672	-0.809817					
44	Н	4.404887	3.958523	-1.009288					
45	Н	3.516415	5.281774	-1.778668					
46	С	2.822862	6.638296	0.505416					
47	Н	2.265687	6.993489	-0.367822					
48	Н	2.219097	6.827616	1.399184					
49	Н	3.732584	7.242247	0.585638					
50	С	4.014980	4.762584	1.618677					
51	Н	3.418476	4.875200	2.529935					
52	Н	4.357029	3.724322	1.566888					
53	Н	4.900812	5.401406	1.709730					
54	C	4.184826	0.235348	-0.911365					
55	C	3.947556	-0.544246	1.150009					
56	c	3,935715	0.703763	-2.204611					
57	c	5 505466	0 113422	-0 300171					
50	c	3 /15252	-1 010771	0.0001					
50	c	2.41JJJJ	-T.OT2//T	2.JJZJZI 0.0E7E41					
59	C	5.349/34	-0.399685	0.95/541					
ΰU	C.	5.03445/	⊥.∪ጋ3∀35	-2.30/TT0					

Cartesian coordinates of the optimized T₁ geometry of 4 computed by Table S12. DFT/CPCM.

1	С	-0.687011	0.045430	-0.067107	61	Н	2.882864	0.182450	-2.593929
2	С	-2.902671	-0.837214	-0.048191	62	С	6.589979	-0.569742	-1.519951
3	С	-3.399878	0.466478	-0.039459	63	С	4.578364	-1.555595	3.400734
4	С	-2.525081	1.576930	-0.049332	64	Н	2.581849	-1.111227	2.676471
5	С	-1.148086	1.360148	-0.047478	65	C	6.399964	-1.384016	1.777366
6	Н	-3.616059	-1.647312	0.039796	66	С	6.273813	-0.190792	-2.836995
7	н	-2.933110	2.583061	-0.077030	67	н	4.750172	0.368150	-4.248574
8	C	-0.058751	2 347833	-0 023866	68	н	7 619950	-0 771853	-1 241862
a	C	-0 196051	3 730287	-0.025265	69	Ċ	5 933990	-1 650682	3 077301
10	c	1 247574	1 780163	0.023203	70	с ц	4 253012	-1 766351	1 414152
11	c	0 020711	1 558452	-0 002474	70	11 U	7 458665	-1.462862	1 5/9530
10		1 100007	4.330432	-0.002474	71	11	7.430003	-1.402002	2 5 6 7 0 2 0
12	н	-1.186267	4.1/9204	-0.045657	72	н	7.071837 C CAEZAC	-0.103952	-3.36/932
13	C	2.352323	2.626395	0.030191	73	Н	6.645/46	-1.935/21	3.845921
14	C	2.220104	4.030394	0.024537	/4	N	3.356900	-0.56164/	0.050182
15	Н	0.//9804	5.632819	-0.006945	/5	C	-0.818595	-2.3564//	-0.1068/0
16	Н	3.348287	2.191731	0.053484	76	С	-1.357304	-3.681291	-0.223223
17	С	-4.863531	0.688455	-0.002431	77	С	-0.485213	-4.776622	-0.143618
18	С	-5.422557	1.731334	0.750049	78	С	1.378076	-3.324615	0.041584
19	С	-5.745294	-0.129209	-0.716537	79	С	0.916393	-4.613925	0.008131
20	С	-6.794937	1.936273	0.785391	80	С	-2.836236	-5.471457	-0.495895
21	Η	-4.771176	2.375004	1.335285	81	Н	2.442098	-3.122362	0.119839
22	С	-7.121712	0.078600	-0.675710	82	Н	1.598927	-5.452644	0.065295
23	Н	-5.346761	-0.928197	-1.336388	83	Н	-3.739504	-6.045809	-0.649797
24	С	-7.682766	1.115652	0.074924	84	С	-1.509806	-1.105456	-0.084997
25	Η	-7.181311	2.752390	1.390851	85	Ν	0.581279	-2.235552	-0.018465
26	Н	-7.759045	-0.581489	-1.254863	86	С	-2.708005	-4.116667	-0.439127
27	Au	1.244997	-0.247506	-0.008665	87	Н	-3.555921	-3.460447	-0.575818
28	С	-9.188724	1.377271	0.142972	88	S	-1.322643	-6.282155	-0.303281
29	С	-9.989086	0.380506	-0.699568					
30	Н	-9.841890	-0.649944	-0.359192					
31	Н	-11.057304	0.606687	-0.618419					
32	Н	-9.718708	0.434534	-1.759432					
33	С	-9.660715	1.262341	1.601931					
34	н	-9.151630	1.981304	2.250943					
35	н	-10 737466	1 455524	1 668627					
36	н	-9 469109	0 259100	1 996549					
37	C	-9 484855	2 793895	-0 376378					
38	ц	-8 970789	3 558231	0 214272					
30	и 11	-9 165224	2 902709	_1 /17090					
40	11	10 560105	2.902700	-1.41/909					
40	C	3 477497	4 903077	0.044995					
41	c	4 220201	4.503077	1 107057					
42	U U	4.330381	4.597295	-1.19/85/					
43	п	5.240970	3.207300	-1.193207					
44	н	4.632171	3.545919	-1.235853					
45	н	3.//543/	4.820661	-2.115088					
46	C	3.146385	6.39/944	0.041264					
4 /	Н	2.58/8/1	6.688186	-0.854828					
48	Н	2.560194	6.686242	0.920149					
49	Н	4.074280	6.979106	0.056218					
50	С	4.294588	4.595885	1.311001					
51	Н	3.711705	4.810626	2.212715					
52	Н	4.602282	3.546476	1.351883					
53	Η	5.201202	5.211263	1.336175					
54	С	4.225954	-0.403453	-1.002663					
55	С	4.101925	-0.929576	1.145257					
56	С	3.910543	-0.025277	-2.311595					
57	С	5.563993	-0.674497	-0.602535					
58	С	3.638245	-1.192290	2.438598					
59	С	5.482349	-1.022943	0.811721					
60	С	4.958455	0.076698	-3.224384					

Table S13.Cartesian coordinates of the optimized T_1 geometry of 6 computed by
DFT/CPCM.

1	C	-0 849868	0 237465	-0 063480	61	ч	2 852536	0 941906	-2 547857
2	c	2 020475	0.721620	0.070445	62	~	6 525770	0.511900	1 005000
2	C	-3.028475	-0.731628	-0.078445	62	C	6.555779	0.364034	-1.225958
3	C	-3.581866	0.550/32	-0.03//13	63	C	4.324318	-1.395863	3.302094
4	С	-2.750742	1.688052	0.024899	64	Н	2.345541	-1.138482	2.450225
5	С	-1.365398	1.530294	0.003250	65	С	6.217721	-0.734628	1.902008
6	Н	-3.702577	-1.577254	-0.145381	66	С	6.269143	1.077270	-2.507105
7	Н	-3.197145	2.677856	0.053475	67	Н	4.791767	1.611316	-3.976806
8	С	-0.320108	2.558775	0.069138	68	Н	7.559842	0.468399	-0.877990
9	С	-0.518281	3,931412	0.160326	69	С	5.699532	-1.251522	3.102632
10	Ĉ	1 007577	2 055473	0 058989	70	н	3 958230	-1 799946	4 240132
11	c	1.007577	1 002012	0.030505	70	11	7 200505	-0 622/10	1 760210
10		1 507511	4.803913	0.247003	71	п	7.290303	-0.032419	2 140401
12	н	-1.52/511	4.336080	0.165/32	12	Н	7.098932	1.3/54/4	-3.140481
13	С	2.073330	2.936761	0.154251	73	Н	6.385369	-1.545395	3.891213
14	С	1.880139	4.330040	0.250437	74	Ν	3.226317	-0.097080	0.015022
15	Н	0.372151	5.868391	0.317737	75	С	-0.885160	-2.161892	-0.072377
16	Н	3.088186	2.551103	0.155135	76	С	-1.387012	-3.463027	0.217305
17	С	-5.053692	0.716627	-0.063057	77	С	-0.542850	-4.565872	0.071968
18	С	-5.686184	1.697847	0.713208	78	С	1.267601	-3.105693	-0.619446
19	Ċ	-5 867622	-0 094649	-0 859588	79	Ċ	0 797940	-4 437950	-0 412914
20	c	7 065502	1 951670	0.601016	00	c	2 557107	-2 051222	1 161402
20		-7.065503	1.851870	0.691016	80	C	2.557197	-2.951333	-1.161403
21	н	-5.08884/	2.333182	1.361845	81	C	-2.///61/	-5.2000/6	0.918238
22	С	-7.251309	0.062603	-0.876659	82	С	1.638866	-5.525311	-0.685706
23	Н	-5.411656	-0.847053	-1.497773	83	Н	2.900702	-1.953604	-1.402922
24	С	-7.886368	1.038537	-0.103442	84	С	3.373137	-4.042916	-1.423782
25	Н	-7.510980	2.620620	1.317122	85	Н	-3.627809	-5.748228	1.301840
2.6	н	-7.834758	-0.588828	-1.518874	86	С	2,924192	-5.340739	-1.176225
27	A 11	1 098209	0 019036	-0 109052	87	н	1 265771	-6 531782	-0 511009
20	C	-0.402619	1 242270	0.105052	00	11	1 262540	2 077277	1 0/125/
20	с ~	-9.402010	1.243378	-0.09///0	00	п	4.302349	-3.877277	-1.041334
29	C	-10.123695	0.261368	-1.024955	89	н	3.560234	-6.196094	-1.381388
30	Н	-9.953503	-0.778665	-0.727135	90	С	-1.628685	-0.932040	-0.064863
31	Н	-11.202359	0.444912	-0.985478	91	Ν	0.481100	-2.010057	-0.334620
32	Н	-9.806081	0.377236	-2.066582	92	С	-2.675498	-3.859740	0.721940
33	С	-9.939488	1.041198	1.328863	93	Н	-3.477026	-3.179083	0.973385
34	Н	-9.489913	1.745196	2.035684	94	S	-1.326293	-6.047954	0.515446
35	Н	-11.024631	1.193008	1.350481					
36	Н	-9.729971	0.027221	1.685078					
37	C	-9 725481	2 672528	-0 564305					
20	11	0 260220	2 424502	0.096554					
20	п	-9.209220	3.424302	1 5000000					
39	н	-9.360216	2.842980	-1.582370					
40	Н	-10.808843	2.838006	-0.558311					
41	С	3.098989	5.250799	0.348561					
42	С	3.966112	5.083968	-0.910832					
43	Н	4.849057	5.730696	-0.851806					
44	Н	4.313773	4.053342	-1.033033					
45	Н	3.403485	5.357316	-1.809687					
46	С	2.703132	6.725254	0.465128					
47	н	2 136930	7 064684	-0 408575					
10	11	2.101064	6 014520	1 260056					
40	11	2.101004	7 242224	1.500050					
49	н	3.604861	1.342334	0.555296					
50	C	3.926645	4.876819	1.589554					
51	Η	3.333297	4.989881	2.502825					
52	Н	4.282646	3.842911	1.545758					
53	Н	4.804042	5.528603	1.669932					
54	С	4.141287	0.329874	-0.921110					
55	С	3.932806	-0.515068	1.117041					
56	С	3.874306	0.838785	-2.195365					
57	ć	5.469112	0.189868	-0.432543					
50	c	3 /1/2011	_1 020402	2 210020					
50	C	5.410011	-1.029403	2.310932					
59	Ċ	5.332305	-0.366517	0.909072					
60	С	4.962224	1.211443	-2.982652					

Table S14.Cartesian coordinates of the optimized S_1 geometry of 1 computed by
TDDFT/CPCM.

1	С	-0.649387	0.018154	-0.006554	61	Н	2.760912	-0.580026	-2.692877
2	С	-2.864689	-0.859284	0.011187	62	С	6.517677	-1.129836	-1.674490
3	С	-3.361619	0.448566	-0.015090	63	С	4.804182	-0.732882	3.437530
4	С	-2.483673	1 550522	-0.036975	64	н	2 774461	-0.441487	2.736146
5	Ċ	-1 106028	1 333391	-0 028222	65	C	6 526074	-1 041282	1 727188
5		1.100020	1.5555551	0.020222	00	~	0.520074	1 10041202	1.727100
6	Н	-3.5/8812	-1.6/3604	0.069133	66	C	6.121435	-1.103632	-3.024038
7	Н	-2.888079	2.557249	-0.088953	67	Н	4.517153	-0.893247	-4.440446
8	С	-0.011458	2.315811	-0.046791	68	Н	7.560733	-1.282091	-1.415095
9	С	-0.139610	3.698541	-0.076570	69	С	6.136738	-0.945486	3.075537
10	С	1.290790	1.747427	-0.030267	70	Н	4.539247	-0.663113	4.486993
11	С	0.992433	4.518020	-0.090321	71	Н	7.567935	-1.205849	1.470544
12	ц	-1 126688	4 154672	-0 089403	72	ч	6 871176	-1 237202	-3 797111
1 2		2 401010	2 576410	0.0009400	72	11	0.071170	1 020441	2 050720
13	c ~	2.401010	2.370410	-0.044108	73	п	0.090410	-1.030441	3.830728
14	C	2.2/9282	3.980880	-0.0/4492	/4	IN	3.393413	-0.61339/	0.021585
15	Н	0.850392	5.593158	-0.113827	75	С	-0.788186	-2.384814	0.032346
16	Н	3.394188	2.133502	-0.031023	76	С	-1.330136	-3.679005	0.030230
17	С	-4.825450	0.674558	-0.015731	77	С	-0.519694	-4.837215	0.056936
18	С	-5.396888	1.737605	0.697510	78	С	1.391561	-3.384125	0.078857
19	С	-5.692539	-0.160231	-0.727436	79	С	0.899099	-4.657069	0.085492
20	С	-6.768943	1.947685	0.695869	80	С	-1.276834	-6.037066	0.046326
21	н	-4 757154	2 393672	1 281860	81	C	-2 625929	-5 825762	0.010826
22	 C	-7 068574	0 053804	-0 724284	92	ц Ц	2 461395	-3 205085	0 095802
22		-7.000374	0.033804	-0.724204	02	п	2.401303	-3.203083	0.095802
23	н	-5.284027	-0.9/93/8	-1.313401	83	н	1.5/3333	-5.505252	0.108943
24	С	-7.642742	1.111986	-0.014238	84	Н	-0.829705	-7.024991	0.064530
25	Η	-7.166244	2.779643	1.271891	85	Η	-3.424294	-6.553955	-0.002339
26	Η	-7.694775	-0.620053	-1.299553	86	С	-1.477440	-1.118646	0.009038
27	Au	1.278521	-0.287583	0.010893	87	S	-3.015390	-4.132472	-0.011764
28	С	-9.149101	1.378692	0.013700	88	N	0.616928	-2.270141	0.052200
29	C	-9.932905	0.366283	-0.825741					
30	Н	-9.797840	-0.656940	-0.459628					
31	Н	-11.001867	0.597709	-0.774954					
32	н	-9 637139	0 396270	-1 879758					
22		0 652000	1 205271	1 462020					
33		-9.053669	1.295571	1.403020					
34	Н	-9.15/600	2.026811	2.108835					
35	Н	-10.731390	1.492002	1.502296					
36	Н	-9.473552	0.300267	1.883513					
37	С	-9.429614	2.784702	-0.541761					
38	Η	-8.927279	3.560386	0.044149					
39	Н	-9.086421	2.870954	-1.577974					
40	Н	-10.505295	2.993430	-0.520029					
41	С	3.542448	4.845504	-0.087782					
42	Ċ	4 381029	4 506662	-1 331522					
43	ц	5 292905	5 11/380	-1 351622					
10		1. (00(00)	2 454000	1.001020					
44	H	4.080090	3.434203	-1.345439					
45	Н	3.817170	4.707813	-2.248370					
46	С	3.220934	6.342096	-0.121476					
47	Η	2.654174	6.615888	-1.017569					
48	Н	2.646865	6.654238	0.757254					
49	Н	4.152732	6.917063	-0.130045					
50	С	4.369982	4.560724	1.176738					
51	Н	3.798254	4.801493	2.079060					
52	н	4.668806	3.509765	1.238751					
52	ц Ц	5 282004	5 169560	1 179520					
50	л С	1 102171	0.701700	1 070755					
54	c	4.1931/1	-0./01/09	-1.0/9/33					
55	C	4.198087	-0.705292	1.125/30					
56	С	3.800664	-0.734334	-2.424085					
57	С	5.552794	-0.958398	-0.702841					
58	С	3.812526	-0.608913	2.468839					
59	С	5.556087	-0.920935	0.752950					
60	C	4.787177	-0.908929	-3.390088					

Table S15.Cartesian coordinates of the optimized T1 geometry of 1 computed by
TDDFT/CPCM.

1	С	-0.649009	0.017633	-0.007654	
2	С	-2.864672	-0.859257	0.010583	
3	Ċ	-3 361375	0 448674	-0 014858	
4	C	-2 483145	1 550410	-0.036433	
5	C	-1 105602	1 332977	-0.028067	
6		-1.105002	1 (724(1	-0.020007	
0	н	-3.578908	-1.6/3461	0.068800	
/	н	-2.887331	2.557263	-0.087742	
8	C	-0.010962	2.315260	-0.045661	
9	C	-0.138939	3.698034	-0.0/4558	
10	С	1.291195	1.746786	-0.029013	
11	С	0.993168	4.517410	-0.087399	
12	H	-1.125975	4.154248	-0.087416	
13	С	2.402364	2.575640	-0.041882	
14	С	2.279954	3.980125	-0.071431	
15	Η	0.851240	5.592574	-0.110303	
16	Н	3.394707	2.132716	-0.028556	
17	С	-4.825145	0.675018	-0.014822	
18	С	-5.396054	1.737917	0.699065	
19	С	-5.692702	-0.159255	-0.726562	
20	С	-6.768052	1.948366	0.697979	
21	Н	-4.755953	2.393572	1.283476	
22	С	-7.068678	0.055149	-0.722850	
23	Н	-5.284608	-0.978273	-1.313000	
24	С	-7.642316	1.113198	-0.012180	
25	н	-7.164931	2.780201	1,274470	
26	н	-7.695259	-0.618305	-1.298179	
27	Z 11	1 279044	-0 288332	0.010375	
28	C	-9 148584	1 380349	0.016308	
20	c	-9 932924	0 368587	-0.823/12	
20		0 700022	0.500507	0.457066	
21	п	11 0010025	-0.034801	0.437888	
20	п	-11.001000	0.000280	-0.//21//	
32	н	-9.63/4//	0.399036	-1.877504	
33	C	-9.653014	1.296490	1.466530	
34	н	-9.156347	2.02/4/9	2.111/56	
35	H	-10./3044/	1.493420	1.505369	
36	Н	-9.472863	0.301133	1.885697	
37	С	-9.428800	2.786716	-0.538402	
38	Н	-8.926041	3.561955	0.047737	
39	H	-9.085876	2.873354	-1.574672	
40	Н	-10.504406	2.995784	-0.516260	
41	С	3.543237	4.844600	-0.083840	
42	С	4.382115	4.506350	-1.327546	
43	Н	5.294110	5.113910	-1.347014	
44	Η	4.681579	3.453841	-1.342024	
45	Н	3.818558	4.708175	-2.244433	
46	С	3.221906	6.341249	-0.116776	
47	Η	2.655451	6.615625	-1.012882	
48	Η	2.647619	6.652959	0.761964	
49	Н	4.153778	6.916102	-0.124739	
50	С	4.370387	4.559003	1.180744	
51	Н	3.798419	4.799245	2.083053	
52	Н	4.669166	3.508000	1.242202	
53	Н	5.282434	5.166800	1.183158	
54	C	4.194400	-0.754447	-1.079061	
55	C	4.194914	-0.713557	1.127022	
56	С	3.804792	-0.717757	-2.423910	
57	c	5.553370	-0.952108	-0.700733	
58	c	3.806685	-0.626921	2.469969	
59	c	5.553765	-0.925011	0.755311	
60	C	4 793632	-0 884018	-3 389048	

61	Н	2.765445	-0.562862	-2.694015
62	С	6.520633	-1.115348	-1.671499
63	С	4.796593	-0.756644	3.439681
64	Н	2.767874	-0.462418	2.736294
65	С	6.522037	-1.051296	1.730566
66	Ċ	6.127345	-1.079769	-3.021612
67	Н	4.525778	-0.860981	-4.439830
68	Н	7.563289	-1.268212	-1.410856
69	Ċ	6.130056	-0.965392	3.078744
70	Н	4.529589	-0.694468	4.489098
71	Н	7.564549	-1.213021	1.474760
72	Н	6.878888	-1.206802	-3.794041
73	Н	6.882351	-1.063055	3.854704
74	Ν	3.392065	-0.615026	0.021888
75	Ċ	-0.788645	-2.385256	0.029477
76	С	-1.330985	-3.679249	0.024342
77	С	-0.520941	-4.837771	0.049092
78	С	1.390837	-3.385380	0.074934
79	С	0.897816	-4.658036	0.078712
80	Ċ	-1.278421	-6.037411	0.035394
81	Ċ	-2.627379	-5.825621	-0.000530
82	Н	2.460694	-3.206804	0.092703
83	Н	1.571803	-5.506473	0.100761
84	Н	-0.831585	-7.025502	0.051791
85	Н	-3.425956	-6.553545	-0.015673
86	С	-1.477489	-1.118855	0.007552
87	S	-3.016361	-4.132138	-0.019948
88	Ν	0.616440	-2.270930	0.050586

OLED Fabrication and Characterization

Figure S26. Normalized EL spectra of the solution-processed devices based on 1–6.

Complex	Conc.	CE^{a}	PE^{b}	EQE ^c	λ_{\max}^{d}	$CIE^{e}(\mathbf{x}, \mathbf{y})$
Complex	/ wt%	$/ \operatorname{cd} A^{-1}$	$/ \mathrm{lm} \mathrm{W}^{-1}$	/ %	/ nm	$\operatorname{CIL}(\mathbf{x},\mathbf{y})$
1	5	12.6	2.6	3.7	544	0.39, 0.57
	10	25.2	7.4	7.9	560	0.44, 0.54
	15	26.1	9.3	8.6	564	0.46, 0.52
	20	22.4	8.9	8.0	572	0.49, 0.50
2	5	8.6	1.7	3.3	580	0.51.0.48
-	10	10.8	2.8	47	588	0.53, 0.46
	15	9.4	3.4	47	596	0.55, 0.44
	20	2.0	0.6	1.1	600	0.56, 0.43
3	5	2.7	0.6	1.5	608	0.57, 0.43
	10	3.9	1.0	2.4	616	0.59, 0.41
	15	6.2	2.3	4.5	620	0.61, 0.39
	20	5.8	2.5	4.6	628	0.62, 0.38
4	5	13.4	3.5	3.9	544	0.39, 0.58
	10	25.6	9.9	7.9	560	0.44, 0.55
	15	27.0	10.6	8.5	560	0.45, 0.54
	20	25.9	11.4	8.4	564	0.46, 0.53
5	5	9.1	1.8	3.2	572	0.48.0.51
U	10	12.2	37	4.8	580	0 51 0 48
	15	11.8	4.4	5.2	588	0.54, 0.46
	20	9.6	4.1	4.6	596	0.55, 0.45
6	5	8.9	2.1	3.8	588	0.53, 0.46
	10	12.0	3.6	6.2	600	0.56, 0.44
	15	10.1	3.8	6.0	608	0.58, 0.42
	20	9.2	4.0	5.9	612	0.59, 0.41

Table S16. Key parameters of solution-processed devices based on 1–6.

^{*a*} CE represents maximum current efficiency.

^b PE represents maximum power efficiency.

^c EQE represents maximum external quantum efficiency.

^{*d*} λ_{max} represents peak maximum.

^{*e*} CIE coordinates are taken at a current density of 100 cd m⁻².

Figure S27. EL spectra of vacuum-deposited devices based on **6**.

1	Conc.	CE^{a}	\mathbf{PE}^{b}	EQE ^c	λ_{\max}^{d}	$\operatorname{CHE}^{\ell}(\mathcal{O})$
Complex	/ % v/v	$/ \operatorname{cd} A^{-1}$	$/ lm W^{-1}$	/ %	/ nm	$CIE^{c}(x, y)$
1	2	35.1	31.5	12.0	560	0.44, 0.53
	5	36.3	32.6	13.5	572	0.47, 0.51
	8	36.5	35.8	14.3	576	0.49, 0.50
	11	33.9	33.0	13.8	580	0.50, 0.49
	14	31.2	31.8	13.7	588	0.52, 0.47
2	2	11.6	10.4	63	600	0 54 0 45
-	5	11.6	10.1	6.8	608	0.56, 0.44
	8	10.5	95	0.0 7 1	612	0.50, 0.11
	11	95	8.5	7.0	620	0.58, 0.41
	14	87	0.5 7 5	6.4	620	0.59, 0.41
	11	0.7	1.0	0.1	020	0.09, 0.11
3	2	11.2	10.1	7.6	620	0.58, 0.41
	5	9.2	8.2	8.2	628	0.60, 0.40
	8	7.5	6.7	7.3	636	0.61, 0.39
	11	6.5	5.7	6.9	636	0.62, 0.38
4	2	38.1	34.2	12.6	556	0.43, 0.54
-	5	41.6	37.3	14.3	564	0.45, 0.53
	8	40.4	36.2	14.4	564	0.46, 0.53
	11	38.3	36.3	14.5	568	0.47, 0.52
	14	34.9	33.2	13.5	572	0.48, 0.51
5	2	15.2	11.9	6.5	588	0.51, 0.48
	5	17.8	16.0	8.5	588	0.52, 0.47
	8	17.2	15.4	8.3	596	0.53, 0.46
	11	16.1	14.4	8.7	600	0.54, 0.45
	14	14.5	13.0	8.2	600	0.54, 0.45

Table S17. Key parameters of vacuum-deposited devices based on 1–5.

^{*a*} CE represents maximum current efficiency.

^b PE represents maximum power efficiency.

^c EQE represents maximum external quantum efficiency.

^{*d*} λ_{max} represents peak maximum.

^{*e*} CIE coordinates are taken at a current density of 100 cd m^{-2} .

Negative charge stabilized by the electronegative nitrogen atom having an octet of electrons

Figure S28. Resonance structures of thieno[2,3-*c*]pyridine (1-thpy) and thieno[3,2*c*]pyridine (2-thpy) moieties in the cyclometalating ligands.

Figure S29. Relative luminance, L/L_0 , and driving voltage of the solution-processed device based on 1 as a function of operation projected at an initial luminance of 100 cd cm⁻².

	L_0^a - / cd m ⁻²	Lifetime / h						
Complex		LT_{70}^{b} at L_{0}	LT ₇₀ at	LT70 at				
			$1,000 \text{ cd } \text{m}^{-2}$	$100 \text{ cd } \text{m}^{-2}$				
Vacuum-deposited devices								
1	4,869	85.6	1,262	63,258				
2	1,291	203.7	314	15,760				
3	993	680	672	33,676				
4	3,534	0.2	2	86				
5	1,596	0.5	1	55				
Solution-processed device								
1	468	188	52	2,598				

Table S18. Lifetime data of devices based on 1–5.

 a L₀ is defined as the initial luminance.

 b LT₇₀ is defined as the operational lifetime at 70 % of the initial luminance.

Materials and reagents. Potassium tetrachloroaurate(III) and sodium hydride were purchased from Strem Chemicals, Inc. Carbazole was purchased from Sigma-Aldrich. 3,6-Di-*tert*-butylcarbazole was purchased from Alfa Aesar. All solvents for synthesis were purified by the Pure Solv MD System (Multiple Dispensing System, Innovative Technology) before use. All other reagents were of analytical grade and were used as received. Tetra-*n*-butylammonium hexafluorophosphate (Aldrich, 98 %) was recrystallized for no less than three times from hot absolute ethanol prior to use. All reactions were performed under anaerobic and anhydrous conditions using standard Schlenk techniques under an inert atmosphere of nitrogen.

Physical measurements and instrumentation. The UV-vis absorption spectra were recorded on a Cary 60 UV-vis (Agilent Technology) spectrophotometer equipped with a Xenon flash lamp. ¹H and ¹³C $\{^{1}H\}$ NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H nucleus) or Bruker AVANCE 500 (500 MHz for ¹H and 125 MHz for ¹³C nuclei) Fourier-transform NMR spectrometer with chemical shifts reported relative to tetramethylsilane ($\delta = 0$ ppm) in deuterated chloroform. High-resolution ESI and CSI mass spectra were recorded on Bruker maXis IITM High Resolution LC-QTOF Mass Spectrometer. Elemental analyses were performed on the Carlo Erba 1106 elemental analyzer at the Institute of Chemistry, Chinese Academy of Sciences in Beijing. Steady-state excitation and emission spectra were recorded on a Horiba Scientific FluoroMax-4 fluorescence spectrofluorometer equipped with a R928P PMT detector. Liquid nitrogen was placed into the quartz-walled optical Dewar flask for low temperature (77 K) photophysical measurements. Solid-state photophysical measurements were performed with solid sample loaded into a quartz tube inside a quartz-walled Dewar flask. Low temperature (77 K) photophysical measurements were done by placing liquid nitrogen into the optical Dewar flask. Excited-state lifetimes of solution and glass samples were measured with a conventional nanosecond pulsed laser system. The excitation source used was the 355 nm output (third harmonic, 8 ns) of a Spectra-Physics Quanta-Ray Q-switched GCR-150 pulsed Nd:YAG laser (10 Hz). Luminescence decay signals were recorded by a Hamamatsu R928 photomultiplier tube, recorded on a Tektronix model TDS-620A (500 MHz, 2 GSs⁻¹) digital oscilloscope, and analyzed with a program for exponential fits. Time-resolved emission spectra were obtained using an Edinburgh Instrument LP980KS transient absorption spectrometer equipped with R928P photomultiplier tube, with capability for time-resolved emission

measurements. Relative photoluminescence quantum yields in solution were measured by the optical dilute method reported by Demas and Crosby.¹² A solution of quinine sulfate in 0.5 M H₂SO₄ has been used as reference ($\Phi = 0.546$, excitation wavelength at 365 nm),¹² whereas absolute PLQYs in thin films were measured on a Hamamatsu C9920–03 absolute PLQY measurement system. Excited-state lifetimes of thin films were measured on a Quantaurus-Tau C11367–34 fluorescence lifetime spectrometer. Cyclic voltammetry was performed with a CH Instruments Model CHI620E (CH Instruments, Inc.). All solutions for electrochemical measurements were purged with prepurified argon gas prior to measurement. Thermal analyses were performed on a TGA Q50 (TA Instruments), in which T_d is defined as the temperature at which the sample shows a 5 % weight loss.

Synthesis. The cyclometalating ligands incorporated with thienopyridine moieties, 4- $^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-^{t}hpy)$ and $4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)$, ^{13,14} and those with the thienoquinoline moieties, $4^{t}BuC^{C}(4^{t}BuC_{6}H_{4})^{N}(1^{t}h_{9})$ and $4^{-t}BuC^{C}(4-$ ^tBuC₆H₄)^N(2-tha),¹⁵ were synthesized by slight modifications of the literature procedures. The resulting ligands were then mercurated and transmetalated to gold(III) metal center to afford the cyclometalated chlorogold(III) precursor complexes, [Au{4- $^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)\}Cl], [Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)}]$ ${}^{t}BuC^{\wedge}C(4 - {}^{t}BuC_{6}H_{4})^{\wedge}N_{(1-thq)}\}C1] \text{ and } [Au\{4 - {}^{t}BuC^{\wedge}C(4 - {}^{t}BuC_{6}H_{4})^{\wedge}N_{(2-thq)}\}C1], \text{ which } and and and a set of the set$ were prepared according to modification of the previously reported literature procedures.^{13,14} The carbazolylgold(III) complexes were then synthesized by reacting carbazole or 3,6-di-tert-butylcarbazole with the corresponding chlorogold(III) precursors with sodium hydride in degassed tetrahydrofuran.^{14,16}

4-*BuC^C(4-*BuC6H4)^N(1-thq)

Off-white solid. Yield: 609 mg, 45 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.35–8.31 (m, 4H, thienoquinolinyl protons and phenyl protons), 8.10–8.09 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 7.98–7.97 (m, 1H, phenyl proton), 7.91–7.90 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 7.78–7.76 (m, 1H, thienoquinolinyl proton), 7.74–7.70 (d, J = 8.4 Hz, 4H, phenyl protons), 7.70–7.65 (m, 1H, thienoquinolinyl proton), 7.54–7.51 (d, J = 8.4 Hz, 4H, phenyl protons), 1.39 (s, 18H, –'Bu). HRMS (Positive ESI): Found *m*/*z* 524.2592 [M]⁺. Calcd for C₃₈H₃₆S [M]⁺:

4-^tBuC^C(4-^tBuC₆H₄)^N(2-thq)

Pale yellow solid. Yield: 707 mg, 49 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.30–8.28 (d, J = 8.4 Hz, 1H, thienoquinolinyl proton), 8.18–8.16 (d, J = 8.1 Hz, 1H, thienoquinolinyl proton), 8.08 (d, J = 1.7 Hz, 2H, phenyl protons), 7.95 (m, 1H, phenyl proton), 7.77–7.72 (m, 2H, thienoquinolinyl protons), 7.69–7.67 (d, J = 8.4 Hz, 4H, phenyl protons), 7.66–7.62 (m, 1H, thienoquinolinyl proton), 7.57–7.56 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 7.52–7.50 (d, J = 8.4 Hz, 4H, phenyl protons), 1.38 (s, 18H, –^{*t*}Bu). HRMS (Positive ESI): Found *m*/*z* 524.2585 [M]⁺. Calcd for C₃₈H₃₆S [M]⁺: *m*/*z* 524.2538.

[Au{4-^tBuC^C(4-^tBuC₆H₄)^N(1-thpy)}Cl]

Yellow solid. Yield: 308 mg, 78 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 9.15–9.14 (d, J = 6.0 Hz, 1H, thienopyridyl proton), 8.03–8.02 (d, J = 5.4 Hz, 1H, thienopyridyl proton), 8.00 (d, J = 1.9 Hz, 1H, phenyl proton), 7.97 (d, J = 1.5 Hz, 1H, phenyl proton), 7.88–7.86 (d, J = 6.0 Hz, 1H, thienopyridyl proton), 7.66–7.64 (d, J = 8.5 Hz, 2H, phenyl protons), 7.56–7.55 (d, J = 8.5 Hz, 2H, phenyl protons), 7.53–7.52 (m, 2H, thienopyridyl proton and phenyl proton), 7.32–7.30 (d, J = 8.0 Hz, 1H, phenyl proton), 7.25–7.24 (m, 1H, phenyl proton), 1.41 (s, 9H, –^{*t*}Bu), 1.38 (s, 9H, –^{*t*}Bu). HRMS (Positive ESI): Found m/z 711.2125 [M–Cl+CH₃CN]⁺. Calcd for AuC₃₅H₃₄N₂S [M–Cl+CH₃CN]⁺: m/z 711.2102.

[Au{4-^tBuC^C(4-^tBuC₆H₄)^N(2-thpy)}Cl]

Yellow solid. Yield: 219 mg, 71 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 9.09–9.08 (d, J = 6.1 Hz, 1H, thienopyridyl proton), 8.25–8.24 (d, J = 5.7 Hz, 1H, thienopyridyl proton), 7.98–7.97 (m, 2H, phenyl protons), 7.94–7.93 (d, J = 6.1 Hz, 1H, thienopyridyl proton), 7.83–7.82 (d, J = 5.7 Hz, 1H, thienopyridyl proton), 7.64–7.62 (d, J = 8.4 Hz, 2H, phenyl protons), 7.56–7.55 (d, J = 8.4 Hz, 2H, phenyl proton), 7.30–7.28 (d, J = 8.0 Hz, 1H, phenyl proton), 7.25–7.23 (m, 1H, phenyl proton), 1.41 (s, 9H, –'Bu), 1.36 (s, 9H, –'Bu). HRMS (Positive ESI): Found *m*/*z* 711.2089 [M–Cl+CH₃CN]⁺. Calcd for AuC₃₅H₃₄N₂S [M–Cl+CH₃CN]⁺: *m*/*z* 711.2102.

$[Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thq)\}Cl]$

Yellow solid. Yield: 303 mg, 65 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 10.0–9.99 (d, J = 8.8 Hz, 1H, thienoquinolinyl proton), 8.24 (d, J = 1.6 Hz, 1H, phenyl proton), 8.18 (s, 1H, phenyl proton), 8.15–8.14 (d, J = 7.9 Hz, 1H, thienoquinolinyl proton), 8.05–8.04 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 7.93–7.92 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 7.62–7.59 (m, 3H, thienoquinolinyl proton and phenyl protons), 7.54–7.52 (d, J = 8.3 Hz, 2H, phenyl protons), 7.41 (s, 1H, phenyl proton), 7.24–7.23 (d, J = 1.6 Hz, 1H, phenyl proton), 7.22–7.21 (d, J = 7.9 Hz, 1H, phenyl proton), 1.42 (s, 9H, –^{*t*}Bu), 1.41 (s, 9H, –^{*t*}Bu). HRMS (Positive ESI): Found m/z 761.2286 [M–Cl+CH₃CN]⁺. Calcd for AuC₃₉H₃₆N₂S [M–Cl+CH₃CN]⁺: m/z 761.2259.

$[Au\{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thq)\}Cl]$

Yellow solid. Yield: 173 mg, 61 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 9.90–9.88 (d, J = 8.8 Hz, 1H, thienoquinolinyl proton), 8.31–8.30 (d, J = 5.6 Hz, 1H, thienoquinolinyl proton), 8.15 (s, 1H, phenyl proton), 8.01–7.99 (m, 2H, thienoquinolinyl proton and phenyl proton), 7.73–7.71 (m, 1H, thienoquinolinyl proton), 7.65–7.57 (m, 4H, thienoquinolinyl protons and phenyl protons), 7.55–7.53 (d, J = 8.3 Hz, 2H, phenyl protons), 7.32 (s, 1H, phenyl proton), 7.23–7.18 (m, 2H, phenyl protons), 1.41 (s, 9H, –'Bu), 1.35 (s, 9H, –'Bu). HRMS (Positive ESI): Found m/z 761.2237 [M–Cl+CH₃CN]⁺. Calcd for AuC₃₉H₃₆N₂S [M–Cl+CH₃CN]⁺: m/z 761.2259.

$[Au{4-^tBuC^C(4-^tBuC_6H_4)^N(1-thpy)}(Cbz)]$ (1)

Yellow solid. Yield: 173 mg, 73 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.28–8.26 (d, J = 7.7 Hz, 2H, carbazolyl protons), 8.14–8.12 (m, 2H, phenyl proton and carbazolyl proton), 8.06–8.05 (d, J = 5.4 Hz, 1H, thienopyridyl proton), 7.72–7.70 (m, 2H, thienopyridyl proton and phenyl proton), 7.67–7.65 (m, 3H, phenyl protons and carbazolyl proton), 7.60–7.58 (m, 3H, thienopyridyl proton and phenyl protons), 7.51–7.50 (d, J = 5.4 Hz, 1H, thienopyridyl proton), 7.39–7.38 (d, J = 8.0 Hz, 1H, phenyl proton), 7.31–7.28 (m, 2H, carbazolyl protons), 7.19–7.17 (dd, J = 8.0 and 1.9 Hz, 1H, phenyl proton), 7.14–7.13 (m, 2H, carbazolyl protons), 6.77–6.76 (d, J = 1.9 Hz, 1H, phenyl proton), 1.43 (s, 9H, –′Bu), 0.91 (s, 9H, –′Bu). ¹³C {¹H} NMR (125 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 166.06, 159.96, 151.83, 151.63,

151.50, 151.01, 149.17, 148.33, 148.14, 142.70, 142.00, 141.88, 138.42, 136.45, 132.43, 132.09, 126.97, 126.05, 125.34, 124.78, 124.00, 123.50, 122.96, 121.97, 121.66, 119.96, 118.37, 116.24, 113.76, 67.99, 65.86, 34.72, 34.68, 25.62. HRMS (Positive ESI): Found m/z 836.2475 [M]⁺. Calcd for AuC₄₅H₃₉N₂S [M]⁺: m/z 836.2494. Elemental analyses: Found (%): C 63.27, H 4.71, N 3.35. Calcd for C₄₅H₃₉AuN₂S·H₂O: C 63.23, H 4.83, N 3.25.

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thpy)}(^{t}Bu_{2}Cbz)](2)$

Orange solid. Yield: 101 mg, 78 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.36–8.35 (d, J = 5.9 Hz, 1H, thienopyridyl proton), 8.24 (d, J = 1.3 Hz, 2H, carbazolyl protons), 8.13 (s, 1H, phenyl proton), 8.05-8.04 (d, J = 5.3 Hz, 1H, thienopyridyl proton), 7.71-7.70 (d, J = 8.2 Hz, 2H, phenyl protons), 7.66-7.64 (m, 2H, thienopyridyl proton and phenyl proton), 7.59-7.57 (d, J = 8.2 Hz, 2H, phenyl protons), 7.53–7.51 (m, 3H, thienopyridyl proton and carbazolyl protons), 7.36–7.32 (m, 3H, phenyl proton and carbazolyl protons), 7.15-7.13 (dd, J = 6.4 and 1.5 Hz, 1H, phenyl proton), 6.65 (d, J = 1.5 Hz, 1H, phenyl proton), 1.47 (s, 18H, -tBu), 1.43 (s, 9H, -'Bu), 0.88 (s, 9H, -'Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 166.44, 160.04, 151.81, 151.56, 151.41, 150.94, 149.17, 148.05, 147.01, 142.97, 142.06, 141.77, 138.86, 138.55, 136.33, 132.40, 132.30, 126.98, 126.03, 125.21, 124.59, 123.51, 122.93, 121.93, 121.81, 121.48, 118.37, 115.57, 113.21, 67.98, 65.86, 34.70, 34.68, 34.60, 32.26, 32.03, 31.41, 30.74, 29.73. HRMS (Positive ESI): Found m/z 948.3709 [M]⁺. Calcd for AuC₅₃H₅₅N₂S [M]⁺: m/z 948.3746. Elemental analyses: Found (%): C 65.14, H 5.74, N 2.93. Calcd for C₅₃H₅₅Au N₂S·1.5H₂O: C 65.22, H 5.99, N 2.87.

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thq)}(Cbz)](3)$

Orange solid. Yield: 201 mg, 74 %. ¹H NMR (400 MHz, CD₂Cl₂, 298 K, δ /ppm): δ 8.79–8.77 (d, J = 8.6 Hz, 1H, thienoquinolinyl proton), 8.45 (d, J = 1.4 Hz, 1H, phenyl proton), 8.28–8.25 (m, 3H, thienoquinolinyl proton and carbazolyl protons), 8.20–8.19 (d, J = 5.4 Hz, 1H, thienoquinolinyl proton), 8.12–8.10 (d, J = 5.5 Hz, 1H, thienoquinolinyl proton), 8.12–8.10 (d, J = 5.5 Hz, 1H, thienoquinolinyl proton), 7.75–7.72 (d, J = 8.4 Hz, 2H, phenyl protons), 7.68 (d, J = 1.3 Hz, 1H, phenyl proton), 7.63–7.61 (d, J = 8.1 Hz, 2H, carbazolyl protons), 7.59–7.56 (d, J = 8.4 Hz, 2H, phenyl protons), 7.45–7.41 (t, J = 8.0 Hz, 1H,

thienoquinolinyl proton), 7.32–7.30 (d, J = 8.0 Hz, 1H, phenyl proton), 7.27–7.23 (m, 2H, carbazolyl protons), 7.13–7.05 (m, 3H, phenyl proton and carbazolyl protons), 6.98–6.93 (m, 1H, thienoquinolinyl proton), 5.62 (d, J = 1.9 Hz, 1H, phenyl proton), 1.40 (s, 9H, –′Bu), 0.70 (s, 9H, –′Bu). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K, δ /ppm): δ 167.51, 161.88, 152.12, 151.72, 151.57, 151.56, 149.25, 148.92, 147.24, 144.40, 144.09, 142.19, 138.48, 137.08, 130.97, 130.77, 129.86, 128.41, 128.18, 127.34, 126.62, 126.52, 125.31, 124.75, 124.65, 124.56, 123.86, 122.43, 122.29, 122.10, 120.32, 117.15, 114.41, 35.10, 35.03, 31.67, 30.79. HRMS (Positive ESI): Found m/z 886.2673 [M]⁺. Calcd for AuC₄₉H₄₁N₂S [M]⁺: m/z 886.2650. Elemental analyses: Found (%): C 63.64, H 4.62, N 3.09. Calcd for C₄₉H₄₁AuN₂S·2H₂O: C 63.77, H 4.91, N 3.04.

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thpy)}(Cbz)]$ (4)

Yellow solid. Yield: 113 mg, 68 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.34–8.33 (d, J = 5.8 Hz, 1H, thienopyridyl proton), 8.27–8.26 (m, 2H, carbazolyl protons), 8.10–8.08 (m, 2H, phenyl proton and carbazolyl proton), 7.85–7.84 (d, J = 5.7 Hz, 1H, thienopyridyl proton), 7.70–7.63 (m, 6H, thienopyridyl proton and phenyl protons and carbazolyl proton), 7.59–7.57 (m, 2H, thienopyridyl proton and phenyl proton), 7.38–7.36 (d, J = 8.0 Hz, 1H, phenyl proton), 7.31–7.27 (m, 2H, carbazolyl protons), 7.18–7.16 (dd, J = 8.0 and 1.9 Hz, 1H, phenyl proton), 7.14–7.11 (m, 2H, carbazolyl protons), 6.73 (d, J= 1.9 Hz, 1H, phenyl proton), 1.43 (s, 9H, –′Bu), 0.90 (s, 9H, –′Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 166.11, 160.32, 152.83, 151.77, 151.73, 151.61, 151.00, 148.31, 148.23, 142.87, 142.09, 141.31, 138.71, 132.89, 132.05, 131.15, 127.05, 126.02, 125.34, 124.76, 124.00, 123.42, 122.16, 122.08, 121.60, 119.95, 118.07, 116.25, 113.72, 67.98, 65.86, 34.68, 25.62. HRMS (Positive ESI): Found *m/z* 836.2471 [M]⁺. Calcd for AuC₄₅H₃₉N₂S [M]⁺: *m/z* 836.2494. Elemental analyses: Found (%): C 64.17, H 4.78, N 3.42. Calcd for C₄₅H₃₉AuN₂S: C 64.59, H 4.70, N 3.35.

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thpy)}(^{t}Bu_{2}Cb_{2})]$ (5)

Orange solid. Yield: 88 mg, 82 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.34–8.33 (d, J = 5.8 Hz, 1H, thienopyridyl proton), 8.31–8.30 (d, J = 6.1 Hz, 1H, thienopyridyl proton), 8.24 (d, J = 1.9 Hz, 2H, carbazolyl protons), 8.10 (d, J

= 1.0 Hz, 1H, phenyl proton), 7.85–7.84 (d, J = 5.8 Hz, 1H, thienopyridyl proton), 7.75–7.74 (d, J = 6.1 Hz, 1H, thienopyridyl proton), 7.67–7.65 (d, J = 8.3 Hz, 2H, phenyl protons), 7.61 (d, J = 0.9 Hz, 1H, phenyl proton), 7.59–7.57 (d, J = 8.3 Hz, 2H, phenyl protons), 7.52–7.50 (d, J = 8.5 Hz, 2H, carbazolyl protons), 7.35–7.32 (m, 3H, phenyl proton and carbazolyl protons), 7.14–7.12 (dd, J = 8.0 and 1.9 Hz, 1H, phenyl proton), 6.62–6.61 (d, J = 1.9 Hz, 1H, phenyl proton), 1.47 (s, 18H, –'Bu), 1.42 (s, 9H, –'Bu), 0.87 (s, 9H, –'Bu). ¹³C {¹H} NMR (125 MHz, CDCl₃, 298 K, relative to Me4Si, δ /ppm): δ 166.51, 160.40, 152.81, 151.80, 151.42, 150.95, 148.17, 147.02, 142.93, 141.99, 141.59, 138.91, 138.83, 132.88, 132.29, 131.04, 127.07, 126.02, 125.25, 124.59, 123.39, 122.12, 121.84, 121.45, 118.04, 115.60, 113.20, 34.70, 34.62, 32.27, 31.43, 30.76. HRMS (Positive ESI): Found *m/z* 948.3710 [M]⁺. Calcd for AuC₅₃H₅₅N₂S [M]⁺: *m/z* 948.3746. Elemental analyses: Found (%): C 66.00, H 5.79, N 3.01. Calcd for C₅₃H₅₅AuN₂S·H₂O: C 65.83, H 5.94, N 2.90.

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thq)}(Cbz)]$ (6)

Orange solid. Yield: 142 mg, 81 %. ¹H NMR (500 MHz, CDCl₃, 298 K, relative to Me₄Si, δ /ppm): δ 8.76–8.74 (d, J = 8.8 Hz, 1H, thienoquinolinyl proton), 8.51–8.50 (d, J = 5.7 Hz, 1H, thienoquinolinyl proton), 8.27–8.26 (m, 3H, phenyl proton and carbazolyl protons), 8.08-8.06 (d, J = 8.0 Hz, 1H, thienoquinolinyl proton), 7.84-7.83(d, J = 5.6 Hz, 1H, thienoquinolinyl proton), 7.68–7.67 (m, 2H, phenyl proton and carbazolyl proton), 7.64-7.58 (m, 5H, phenyl protons and carbazolyl proton), 7.39–7.38 (m, 1H, thienoquinolinyl proton), 7.30–7.28 (d, J = 7.9 Hz, 1H, phenyl proton), 7.25-7.21 (m, 2H, carbazolyl protons), 7.11-7.08 (m, 2H, carbazolyl protons), 7.06-7.04 (dd, J = 7.9 and 1.9 Hz, 1H, phenyl proton), 7.00-6.95 (m, 1H, thienoquinolinyl proton), 5.73-5.72 (d, J = 1.9 Hz, 1H, phenyl proton), 1.43 (s, 9H, -*t*Bu), 0.72 (s, 9H, -*t*Bu). ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K, relative to Me₄Si, δ/ppm): δ 167.16, 162.36, 151.72, 151.55, 151.36, 151.03, 150.77, 148.85, 148.36, 144.13, 142.44, 141.90, 138.55, 131.23, 130.81, 130.34, 128.59, 128.14, 128.01, 127.03, 126.04, 126.01, 124.72, 124.67, 124.10, 124.05, 122.93, 122.15, 121.38, 119.76, 116.47, 114.04, 34.69, 34.62. HRMS (Positive ESI): Found *m*/*z* 886.2621 [M]⁺. Calcd for AuC₄₉H₄₁N₂S [M]⁺: *m/z* 886.2650. Elemental analyses: Found (%): C 63.70, H 4.64, N 3.10. Calcd for C₄₉H₄₁AuN₂S·2H₂O: C 63.77, H 4.91, N 3.04.

Molecular orientation measurements. The gold(III) complexes doped in 3,3'-di(9Hcarbazol-9-yl)biphenyl (m-CBP) thin films were prepared by thermal evaporation on top of precleaned bare silicon substrates. The refractive index and thickness of the films were then determined by the alpha-SE Ellipsometer (J. A. Woollam). Then, 20-nm thick thin films were fabricated on glass substrates that were carefully pre-washed in the same manner as the fused silica substrates. The dipole orientation of the gold(III) complexes estimated by the Photoluminescence Light Distribution Characteristic was Measurement System (C13472-01, Hamamatsu Photonics). All the thin films were freshly prepared to avoid photodegradation of the materials during the measurement. The samples were then attached to a cylindrical lens, with the refractive index of 1.5, via matching oil, and mounted on an automated rotational stage with the film surface precisely positioned at the rotational center of the stage. Photoexcitation of the samples $(\lambda = 365 \text{ nm}, \text{Power} = \sim 1.5 \text{ mW})$ was performed using a fiber-guided LED output source. The emission from the sample was then collected by a Photonic Multi-Channel Analyzer PMA-12 (C10027-01, Hamamatsu Photonics) through a long-pass filter and a transverse magnetic (TM) mode polarizer. The estimated p_z and order parameter (S) were calculated by the Standard Software (U6039-09, Hamamatsu Photonics), and the angle θ between the normal of a substrate and transition dipole was then calculated by the equation, $S = \frac{3(\cos^2 \theta) - 1}{2}$, with the bracketed values (...) indicating an ensemble average of $\langle \cos^2 \theta \rangle$ ². The ratio of the horizontal dipoles to the total dipoles of the emitters (Θ) is obtained by the equation $\Theta:(1 - \Theta) = \langle \sin^2 \theta \rangle: \langle \cos^2 \theta \rangle = h:v.^{10,11}$

Computational details. All calculations were carried out with the Gaussian 09 suite of programs.¹⁷ By density functional theory (DFT), the ground-state (S₀) geometries of complexes 1, 3, 4 and 6 were fully optimized in toluene with the hybrid Perdew, Burke, and Ernzerhof (PBE0) functional,¹⁸⁻²⁰ in conjunction with the conductor-like polarizable continuum model (CPCM).^{21,22} Time-dependent density functional theory^{23–25} (TDDFT) calculations at the same level associated with CPCM were then carried out on the optimized S₀ geometries to compute the singlet-singlet transitions in the electronic absorption spectra of 1, 3, 4 and 6. In order to investigate the nature of the emissive states, the geometries of the lowest-lying triplet excited states (T_1) were optimized with the unrestricted UPBE0/CPCM method for 1, 3, 4 and 6. On the basis of the optimized S₀ and T₁ geometries, vibrational frequencies were calculated and all stationary points were verified to be minima on the potential energy surface, as there are no imaginary frequencies observed (NIMAG = 0). In order to gain further insights into the excited states involved in thermally activated delayed fluorescence (TADF) and to compute the ΔE_{ST} value, the geometries of the lowest singlet excited state (S₁) and the T_1 state of **1** were optimized using TDDFT with the PBE0 functional.^{18–20} The Cartesian coordinates of the optimized ground- and excited-state geometries are given in Tables S7–S16. For all the calculations, the Stuttgart effective core potentials (ECPs) and the associated basis set were used to describe Au²⁶ with f-type polarization functions ($\zeta = 1.050$),²⁷ while the 6-31G(d,p) basis set²⁸⁻³⁰ was applied for all other atoms. All the DFT and TDDFT calculations were carried out with a pruned (99,590) grid for numerical integration.

OLED fabrication and measurements. OLEDs were fabricated on patterned ITOcoated glass substrates. The substrates were cleaned with Decon 90, rinsed with deionized water, then dried in an oven, and finally treated in an ultraviolet ozone chamber. A 40-nm-thick PEDOT:PSS was spin-coated onto the ITO-coated glass substrates as hole-transporting layer. After that, emissive layer was formed by mixing dendrimers with MCP to prepare a 10 mg cm⁻³ solutions in chloroform and spin-coating onto PEDOT:PSS layer to give 30-nm-thick uniform thin film. After spin-coating, the substrates were mounted onto the sample holder inside the Trovato Vacuum Deposition System and pumped down to high vacuum with base pressure better than 5×10^{-7} Torr. Sequential vapor deposition of a 5-nm-thick 3TPYMB as a hole-blocking layer and a 40-nm-thick TmPyPB as an electron-transporting layer were made onto the PEDOT:PSS layer. Finally, a 1-nm thick LiF and a 150-nm thick Al were deposted as the metal cathode. For the vacuum-deposited OLEDs, sequential thermal evaporation of α -NPD (40 nm), TCTA (5 nm), emissive layer, Tm3PyP26PyB (50 nm), LiF (1 nm) and Al (150 nm) were made onto the ITO substrate, in which α -NPD, TCTA, and Tm3PyP26PyB were used as hole-transporting, exciton-blocking and electrontransporting layers, respectively. The emissive layer was prepared by co-evaporating Au(III) complex and *m*-CBP as host simultaneously. All the organic materials and metals were put in separate tantalum boats and vapor deposited by resistive heating. All the films were sequentially deposited at a rate of 0.1-0.2 nm s⁻¹ without vacuum break. A quartz crystal was equipped in the vacuum deposition system, with which by monitoring the change in resonant frequency due to the additional mass of material deposition onto this crystal, the thickness and deposition rate could be monitored. A shadow mask was used to define the cathode and to make four 0.1 cm² devices on each substrate. Current density-voltage-luminance characteristics and EL spectra were measured simultaneously with a programmable Keithley model 2420 power source and a Photoresearch PR-655 spectrometer. The operational lifetime of the vacuumdeposited device was measured by a McScience M6000 OLED lifetime test system.

NMR spectra.

4-^tBuC^C(4-^tBuC6H4)^N(1-thq)

4-*t*BuC^C(4-*t*BuC₆H₄)^N(2-thq)

[Au{4-^tBuC^C(4-^tBuC₆H₄)^N(2-thpy)}Cl]

$[Au{4-^tBuC^{C}(4-^tBuC_6H_4)^{N}(1-thq)}Cl]$

[Au{4-^tBuC^C(4-^tBuC₆H₄)^N(2-thq)}Cl]

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thpy)}(Cbz)](1)$

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(1-thpy)}(^{t}Bu_{2}Cb_{2})]$ (2)

$[Au{4-'BuC^{C}(4-'BuC_{6}H_{4})^{N}(1-thq)}(Cbz)] (3)$

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-^{t}hpy)}(Cbz)](4)$

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thpy)}](^{t}Bu_{2}Cbz)](5)$

$[Au{4-^{t}BuC^{C}(4-^{t}BuC_{6}H_{4})^{N}(2-thq)}(Cbz)](6)$

CSI-mass spectra and the corresponding simulated isotope patterns

 $[Au{4-'BuC^{C}(4-'BuC_{6}H_{4})^{N}(1-thpy)}(Cbz)] (1)$

$[Au{4-'BuC^C(4-'BuC_6H_4)^N(2-thpy)}(Cbz)] (4)$

References

- 1. N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877–910.
- 2. D. Yokoyama, J. Mater. Chem., 2011, 21, 19187–19202.
- 3. T. D. Schmidt, T. Lampe, D. Sylvinson M. R, P. I. Djurovich, M. E. Thompson and W. Brütting, *Phys. Rev. Appl.*, 2017, **8**, 037001.
- 4. K.-H. Kim and J.-J. Kim, *Adv. Mater.*, 2018, **30**, 1705600.
- J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo and S. Reineke, *Sci. Adv.*, 2018, 4, eaar8332.
- 6. T. Komino, H. Tanaka and C. Adachi, *Chem. Mater.*, 2014, 26, 3665-3671.
- K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. Woo Lee, J. Huh, Y. You and J.-J. Kim, *Nat. Commun.*, 2014, 5, 4769.
- K.-H. Kim, E. S. Ahn, J.-S. Huh, Y.-H. Kim and J.-J. Kim, *Chem. Mater.*, 2016, 28, 7505–7510.
- K.-H. Kim, J.-L. Liao, S. W. Lee, B. Sim, C.-K. Moon, G.-H. Lee, H. J. Kim, Y. Chi and J.-J. Kim, *Adv. Mater.*, 2016, 28, 2526–2532.
- 10. T. Marcato and C.-J. Shih, *Helv. Chim. Acta*, 2019, **102**, e1900048.
- 11. C.-K. Moon, Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films, Springer, 2019.
- 12. G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991–1024.
- 13. R. Kumar, A. Linden and C. Nevado, *Angew. Chem. Int. Ed.*, 2015, **54**, 14287–14290.
- L.-K. Li, M.-C. Tang, S.-L. Lai, M. Ng, W.-K. Kwok, M.-Y. Chan and V. W.-W. Yam, *Nat. Photon.*, 2019, 13, 185–191.
- B. Jiang, X. Ning, S. Gong, N. Jiang, C. Zhong, Z.-H. Lu and C. Yang, *J. Mater. Chem. C*, 2017, 5, 10220–10224.
- 16. W.-K. Kwok, M.-C. Tang, S.-L. Lai, W.-L. Cheung, L.-K. Li, M. Ng, M.-Y. Chan and V. W.-W. Yam, *Angew. Chem. Int. Ed.*, 2020, **59**, 9684–9692.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,

K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, 2013.

- 18. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 19. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396.
- 20. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6170.
- 21. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.
- 22. M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.*, 2003, **24**, 669–681.
- 23. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454–464.
- M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439–4449.
- R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218–8224.
- D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theoret. Chim.* Acta, 1990, 77, 123–141.
- A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 111–114.
- 28. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- 29. P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta*, 1973, **28**, 213–222.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654–3665.