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1 Methods

The experimental data for the analysis in this work was extracted from Ref. 18. The
RISRS experiment was performed in a pump-probe transmission geometry. The data
was acquired using a pump photon energy of 3.06 eV, average power of 300µW at a
pulse repetition rate of 100 kHz, focused to a 1.9-mm spot diameter. The oscillatory
component of the transient absorption signal between the energies 2.34 and 2.40 eV
was binned to generate Fig. 1(b). Experimental details for the RISRS experiment
can be found in Ref. 18.

2 Temperature dependent resonant impulsive stimulated Raman Spectra
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Figure S1: Temperature dependence of the RISRS Spectra for (PEA)2PbI4.
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3 Continuous Wavelet transform (CWT) analysis

The CWT was implemented using the open source wavelet transform software for
Python under MIT license27. A complex Morlet wavelet was employed for the analysis,
equation S1, with parameters B and C equal to 50 and 1 respectively. The wavelet
transform is defined as equation S2, were W (τ, s) are the wavelet coefficients. It can
be noted that if f(t) corresponds to a damped oscillation the |W (τ, s)| will not have
an oscillatory component in τ .
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Using f(t) = A exp(−τ/τc) cos(ωt + φ) and rearranging equation S2, we obtained
expression S3. With a value of B chosen such that s2B/2τc > τ the influence of τ in
the integral is negligible. By taking the norm the dephasing rate is isolated since the
complex phase cancels out and we can bin all the τ independent terms together as it
is shown in equation S4.
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(S3)

|W (τ, s)| ≈ |w(s)| exp(−τ/τc) (S4)
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3.1 Complete CWT data set
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Figure S2: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 5 K.
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Figure S3: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 25 K.
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Figure S4: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 50 K.
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Figure S5: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 75 K.
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Figure S6: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 100 K.
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Figure S7: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 125 K.
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Figure S8: Wavelet transformation (CWT) spectrum of the time-domain RISRS data
with a complex Morlet wavelet at 150 K.
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Figure S9: Time-integrated spectrum at 5 K between (a) 5-10 ps, (b) 10-15 ps and at
100 K between (c) 5-10 ps and (d) 10-15 ps.
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4 Estimation of the dephasing rate

The coherence lifetime was extracted from M2 by fitting the data to a single exponen-
tial, as it is shown in Fig. S11. The error bars were determined with the confidence
interval function at 99% using the python lmfit package. The traces for M1 did not
follow a single exponential trend, then the decay rate was estimated as the value at
which the amplitude is 1/e of the original amplitude, and the error bars were esti-
mated as the time at which the amplitude is 1/e± 0.2 of the original.

The dephasing rate is defined by equation S5, where Γ0 is the dephasing rate in ps−1:

Γ0 =
2

τrate
. (S5)
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Figure S10: Dephasing rate extraction via an exponential fit of the energy cuts at
4.40 meV for the temperatures (a) 5 K, (b) 25 K, (c) 50 K, (d) 75 K, (e) 100 K and (f)
125 K.
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Figure S11: Energy cuts at 2.61 meV for the temperatures (a) 5 K, (b) 25 K, (c) 50 K,
(d) 75 K, (e) 100 K and (f) 125 K.

S7


