Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Substituent-Dependent Absorption and Fluorescence Properties of Perylene Bisimide

Radical Anions and Dianions

Rebecca Renner, Matthias Stolte, Julia Heitmüller, Tobias Brixner, Christoph Lambert, and

Frank Würthner*

* E-mail: wuerthner@uni-wuerzburg.de

Contents

1.	General Methods	S2
2.	Synthesis	S4
3.	Electrochemical Measurements	S7
4.	Optical Measurements	S9
5.	Theoretical Investigation	S17
6.	Supporting References	S34

1. General Methods

Unless otherwise stated, all chemicals, reagents and solvents were purchased from commercial suppliers and used after appropriate purification. N,N'-Bis(2,6-diisopropylphenyl)-1,6,7,12tetraphenylperylene-3,4:9,10-bis(dicarboximide) was synthesized according to literature.^[S1] The solvents for the reduction and spectroscopic measurements were of HPLC grade and dried prior to use by an Innovative Technology PureSolv solvent purification system (DCM), by refluxing the solvent over sodium followed by distillation onto sodium (THF) or by refluxing the solvent over molecular sieves (4 Å, 1,2-difluorobenzene). Optical measurements were performed under inert conditions. UV/Vis/NIR absorption spectra were recorded on a Jasco V-770 or V-670 spectrometer. Cyclic and square wave voltammetry measurements were conducted on a standard commercial electrochemical analyzer (EC epsilon, BASi instruments, UK) with a three-electrode single-compartment cell. A Pt disc electrode was used as a working electrode, a platinum wire as a counter electrode and an Ag/AgCl reference electrode using ferrocenium/ferrocene (Fc⁺/Fc) as an internal standard for the calibration of the potential. The measurements were carried out under an argon atmosphere in DCM and tetrabutylammonium hexafluorophosphate (TBAHFP) was added as supporting electrolyte, resulting in an available redox window from -2.25 V to +1.75 V (vs. Fc/Fc⁺). Spectroelectrochemical absorption measurements were recorded in reflection mode in a three-electrode custom-made cell with a 6 mm diameter Pt-disc working electrode, Pt counter and Ag/AgCl leak free reference electrode implemented in an Agilent Cary 5000 UV/Vis/NIR spectrometer. The optical path was adjusted to 100 µm with a micrometer screw. Potentials were applied with a reference 600 potentiostat (Gamry Instruments). Application of potential steps and recording of absorption spectra was automated by a lab view routine. Fluorescence spectra were measured on a FLS980 fluorescence spectrometer (Edinburgh Instruments) and were corrected against the photomultiplier sensitivity and the lamp intensity. For the fluorescence spectra of the PBI dianions, a custom-built flow cell setup has been built into this spectrometer^[S2] and the measurements were conducted in front-face geometry (22.5°). The fluorescence lifetimes were determined using picosecond pulsed diode lasers (EPL-series, Edinburgh Instruments) and a PMT-900 fast photomultiplier (Edinburgh Instruments Ltd; Inc) for time correlated single photon counting (TCSCP). The fitting of the data was carried out using the Exp. Tail Fit or the Exp. Reconvolution Fit (for **PBI-CICN**) routine supplied by Edinburgh Instruments Ltd.; Inc. Fluorescence quantum yields of the neutral PBIs were determined using the dilution method (OD < 0.05) and N,N'-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) ($\Phi_{\rm f} =$ 1.00 in CHCl₃) or N,N'-bis(2,6-diisopropylphenyl)- 1,6,7,12-tetraphenoxyperylene-3,4:9,10bis(dicarboximide) (for **PBI-OPh**, $\Phi_f = 0.96$ in CHCl₃)^[S3] as reference. Fluorescence quantum yields of PBI²⁻ were determined relative to the neutral PBI by excitation at 385 nm (**PBI-Cl**), 415 nm (PBI-H), 490 nm (PBI-Ph) and 398 nm (PBI-OPh). Theoretical calculations were performed by the Gaussian software^[S4] using B3LYP/6-31G(d) level theory for structure optimization and B3LYP/def2-SVP (for PBI-CICN, PBI-Cl and PBI-H) or ω B97XD/def2-SVP (for **PBI-Ph** and **PBI-OPh**) level theory for TD-DFT simulation of electron transitions, as these basis sets gave the best results in accordance with the experimental data respectively. Transition densities were calculated using the multiwfn program by T. Lu et al..^[S5]

2. Synthesis

PBA-CIBr and **PBI-CIBr** have been synthesized according to previously reported procedures.^[S 6] For the synthesis of **PBI-CICN**, a literature known procedure has been modified.^[S7]

Scheme S1 Synthesis of PBI-ClCN a) DBI, 50% oleum, 100 °C, 18 h, 80%; b) 2,6-diisopropylaniline, propionic acid, reflux, 16 h, 79%; c) CuCN, DMF, 140 °C, 3 h, 9%. DBI = dibromoisocyanuric acid.

A solution of 300 mg (258 µmol) PBI-ClBr and 138 mg (1.55 mmol) copper cyanide in 30 mL of dry DMF was heated to 140 °C for 3 h under argon. After cooling to room temperature, the mixture was poured on water and extracted with dichloromethane. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (dichloromethane) and HPLC (dichloromethane) to give a light red solid.

Yield: 22.2 mg (23.4 μ mol, 9%). ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.61 (t, 2H), 7.43 (d, 4H), 2.67 (sept, 4H), 1.21 (d, 12H), 1.20 (d, 12H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 159.3, 146.0, 140.4, 132.5, 131.0, 129.2, 129.1, 127.4, 125.0, 123.4, 118.7, 113.2, 29.9, 24.21, 24.16; HRMS (ESI, negative mode, acetonitrile/chloroform 1:1): *m/z* calculated for C₅₂H₃₄Cl₄N₆O₄⁻ 946.1401 [M]⁻; found: 946.1430; m.p.>350 °C.

Typical procedure for the chemical reduction

Under an argon atmosphere in a Schlenk flask, the respective PBI (5 μ mol), potassium graphite (2.70 mg, 20 μ mol, 4 eq) and 18-crown-6 (5.29 mg, 20 μ mol, 4 eq) were dissolved in THF and stirred at room temperature for one hour. Afterwards, the solvent was removed *in vacuo* and the residue washed with hexane and toluene. Then the obtained solid was dissolved in 1,2-difluorobenzene and immediately put into a UV/Vis/NIR spectrometer to characterize the obtained species.

Fig. S1 ¹H NMR (400 MHz) spectrum of PBI-CICN in CD₂Cl₂ at room temperature.

Fig. S2 13 C NMR (100 MHz) spectrum of PBI-ClCN in CD₂Cl₂ at room temperature.

Fig. S3 ESI-MS spectrum of PBI-CICN.

3. Electrochemical Measurements

Fig. S4 Cyclic voltammograms (solid lines) and square wave voltammograms (dashed lines) of a) **PBI-CICN** and b) **PBI-CI**. Measurements were performed using DCM ($c_0 = 2 \cdot 10^{-4}$ M) at room temperature, using TBAHFP (0.1 M) as electrolyte (scan rate 100 mV s⁻¹, the scan direction is indicated by the small arrow, SW amplitude 25 mV, SW frequency 15 Hz).

Fig. S5 Cyclic voltammograms (solid lines) and square wave voltammograms (dashed lines) of a) **PBI-H** and b) **PBI-Ph**. Measurements were performed using DCM ($c_0 = 2 \cdot 10^{-4}$ M) at room temperature, using TBAHFP (0.1 M) as electrolyte (scan rate 100 mV s⁻¹, the scan direction is indicated by the small arrow, SW amplitude 25 mV, SW frequency 15 Hz).

Fig. S6 Cyclic voltammogram (solid line) and square wave voltammogram (dashed line) of **PBI-OPh**. Measurements were performed using DCM ($c_0 = 2 \cdot 10^{-4}$ M) at room temperature, using TBAHFP (0.1 M) as electrolyte (scan rate 100 mV s⁻¹, the scan direction is indicated by the small arrow, SW amplitude 25 mV, SW frequency 15 Hz).

Table S1 Electron affinities of the different investigated PBIs as isolated molecule (A_g), as molecular solid (A_c) and in solution (A_{sol}) calculated according to Ref. [S8].

	PBI-CICN	PBI-Cl	PBI-H	PBI-Ph	PBI-OPh
A _g	2.96 eV	2.31 eV	2.07 eV	2.05 eV	1.96 eV
A _c	4.30 eV	3.63 eV	3.38 eV	3.36 eV	3.27 eV
A _{sol}	5.01 eV	4.38 eV	4.15 eV	4.13 eV	4.05 eV

Table S2 Ionization energies of the different investigated PBIs as isolated molecule (I_g), as molecular solid (I_c) and in solution (I_{sol}) calculated according to Ref. [S8].

	PBI-CICN	PBI-Cl	PBI-H	PBI-Ph	PBI-OPh
Ig	-	7.45 eV	6.94 eV	6.43 eV	6.23 eV
I _c	-	6.60 eV	6.17 eV	5.74 eV	5.58 eV
I _{sol}	-	6.74 eV	6.45 eV	6.16 eV	6.05 eV

4. Optical Measurements

Fig. S7 UV/Vis/NIR absorption spectra of mixed solutions of **PBI^{2–}** and **PBI^{-–}** generated by chemical reduction of a) **PBI-Cl**, b) **PBI-H**, c) **PBI-Ph** and d) **PBI-OPh** with KC₈ measured in 1,2-difluorobenzene at room temperature stored under inert conditions during the measurements.

Fig. S8 Schematic illustration of the custom built spectroelectrochemical cells for a) absorption measurements adapted from Borg *et al.*^[S9] and b) fluorescence measurements as described by Heitmüller *et al.* Adapted with permission from Ref. [S2] with permission from Elsevier.

Fig. S9 UV/Vis/NIR absorption changes upon electrochemical reduction of a) **PBI-CICN** to **PBI-CICN'** (in steps of 20 mV) at potentials from +500 to +200 mV. b) **PBI-CICN'** to **PBI-CICN**²⁻ (in steps of 20 mV) at potentials from +200 to -300 mV ($c_0 = 2 \cdot 10^{-4} \text{ M}$, 0.1 M TBAHFP, DCM).

Fig. S10 a) Plots of the relative changes upon reduction of **PBI-ClCN** compared to the neutral state; b) Plots of the absorbance in dependance of the applied voltage V_{ap} at 1243 nm (grey squares), 817 nm (red circle) and 531 nm (blue triangle).

Fig. S11 UV/Vis/NIR absorption changes upon electrochemical reduction of a) **PBI-Cl** to **PBI-Cl**⁻ (in steps of 20 mV) at potentials from -100 to -420 mV; b) **PBI-Cl**⁻ to **PBI-Cl**²⁻ (in steps of 20 mV) at potentials from -420 to -900 mV ($c_0 = 4 \cdot 10^{-4}$ M, 0.1 M TBAHFP, DCM).

Fig. S12 a) Plots of the relative changes upon reduction of **PBI-Cl** compared to the neutral state; b) Plots of the absorbance in dependance of the applied voltage V_{ap} at 1011 nm (grey squares), 759 nm (red circle), 684 nm (blue triangle) and 522 nm (green inverse triangle).

Fig. S13 UV/Vis/NIR absorption changes upon electrochemical reduction of a) **PBI-H** to **PBI-H**⁻ (in steps of 20 mV) at potentials from -300 to -660 mV; b) **PBI-H**⁻ to **PBI-H**²⁻ (in steps of 20 mV) at potentials from -660 mV to -1.20 V ($c_0 = 4 \cdot 10^{-4}$ M, 0.1 M TBAHFP, DCM).

Fig. S14 a) Plots of the relative changes upon reduction of **PBI-H** compared to the neutral state; b) Plots of the absorbance in dependance of the applied voltage V_{ap} at 957 nm (grey squares), 715 nm (red circle), 574 nm (blue triangle) and 527 nm (green inverse triangle).

Fig. S15 UV/Vis/NIR absorption changes upon electrochemical reduction of a) **PBI-Ph** to **PBI-Ph**⁻ (in steps of 20 mV) at potentials from -300 to -680 mV. b) **PBI-Ph**⁻ to **PBI-Ph**²⁻ (in steps of 20 mV) at potentials from -680 to -1.10 V ($c_0 = 8 \cdot 10^{-4}$ M, 0.1 M TBAHFP, DCM).

Fig. S16 a) Plots of the relative changes upon reduction of **PBI-Ph** compared to the neutral state; b) Plots of the absorbance in dependance of the applied voltage V_{ap} at 1097 nm (grey squares), 799 nm (red circle), 653 nm (blue triangle) and 609 nm (green inverse triangle).

Fig. S17 UV/Vis/NIR absorption changes upon electrochemical reduction of c) **PBI-OPh** to **PBI-OPh**⁻⁻ (in steps of 20 mV) at potentials from -400 to -780 mV; d) **PBI-OPh**⁻⁻ to **PBI-OPh**²⁻ (in steps of 20 mV) at potentials from -780 mV to -1.10 V ($c_0 = 3.6 \cdot 10^{-4}$ M, 0.1 M TBAHFP, DCM).

Fig. S18 a) Plots of the relative changes upon reduction of **PBI-OPh** compared to the neutral state; b) Plots of the absorbance in dependance of the applied voltage V_{ap} at 1076 nm (grey squares), 785 nm (red circle), 689 nm (blue triangle) and 576 nm (green inverse triangle).

		$\lambda_{\rm abs}$ [nm]			<i>ε</i> _{max} [М ⁻¹ ст ⁻¹]	
	PBI	PBI*-	PBI ²⁻	PBI	PBI⁺-	PBI ²⁻
PBI-CICN	531*	1243	817*	33900*	26100	87200*
	496	1043	737	22100	4800	24200
	446	947	669	12200	7400	12300
		817*			70300*	
		714			10700	
PBI-Cl	522*	1011	684*	58200*	22100	109100*
	489	918		41600	51800	
	428	759*		16300	101100*	
		679			22000	
PBI-H	527*	957	649	93700*	42800	25600
	491	797	574*	61300	63500	102600*
	459	768		23600	29500	
		715*			94100*	
		703			93000	
		682			61700	
PBI-Ph	609*	1097	653*	23400*	8300	67300*
	454	877	606	14600	27300	4200
		799*	447		47600*	8800
		489			10600	
PBI-OPh	576*	1076	689*	49600*	15100	88700*
	539	971		31900	24800	
	443	785*		16700	88700*	

Table S3 Summary of the absorption properties of the investigated PBIs and their electrochemical reduced species measured in DCM (0.1 M TBAHFP) at room temperature.

^{*}main absorption peak.

Fig. S19 Tauc plots (black) including the linear fit (red) of a) **PBI-ClCN**, b) **PBI-Cl**, c) **PBI-H**, d) **PBI-Ph** and e) **PBI-OPh**. The absorption band used to obtain the Tauc plots always corresponds to the S_0 - S_1 transition of the neutral PBI.

Fig. S20 UV/Vis/NIR absorption and fluorescence emission spectra of the neutral (a-e) and dianionic (f-i) PBI species of a) **PBI-ClCN**; b), f) **PBI-Cl**; c), g) **PBI-H**; d), h) **PBI-Ph**; and e), i) **PBI-OPh** measured in DCM ($c_0 = 4 \cdot 10^{-4}$ M for absorption, $c_0 = 1 \cdot 10^{-5}$ M for fluorescence of PBI and $c_0 = 1 \cdot 10^{-4}$ M for fluorescence of PBI^{2–}) at room temperature using TBAHFP (0.1 M) as electrolyte.

Fig. S21 Fluorescence decay in dichloromethane at 293 K for **PBI-ClCN** (black), **PBI-Cl** (red), **PBI-H** (blue), **PBI-Ph** (green) and **PBI-OPh** (orange) in their a) neutral as well as b) dianionic state ($c_0 = 1 \cdot 10^{-5}$ M for lifetime of PBI and $c_0 = 1 \cdot 10^{-4}$ M for lifetime of PBI^{2–}).

Fig. S22 Fluorescence decay of the neutral (solid circles) and dianionic (open circels) a) **PBI-Cl**, b) **PBI-H**, c) **PBI-Ph** and d) **PBI-OPh** in dichloromethane at 293 K ($c_0 = 1 \cdot 10^{-5}$ M for lifetime of PBI and $c_0 = 1 \cdot 10^{-4}$ M for lifetime of PBI^{2–}).

5. Theoretical Investigation

Fig. S23 UV/Vis/NIR absorption spectra of **PBI** (dark grey) and the electrochemically generated **PBI**⁻ (red) and **PBI**²⁻ (blue) of a) **PBI-CICN**, b) **PBI-CI**, c) **PBI-H**, d) **PBI-Ph** and e) **PBI-OPh** measured in DCM ($c_0 = 4 \cdot 10^{-4}$ M) at room temperature using TBAHFP (0.1 M) as electrolyte, as well as the calculated transitions thereof (lighter color) using TD-DFT (a) – c) B3LYP/def-SVP and d)-e) ω B97XD/def2-SVP).

The calculated transitions in Fig. S23 have been shifted, so that the transition with the highest

oscillator strength corresponds in energy to the wavelength of the absorption maximum.

Fig. S24 HOMO, LUMO and LUMO+1 levels as obtained from DFT calculations of a) **PBI-CICN** (left), the corresponding α - and β -spin MO levels of **PBI-CICN**⁻⁻ (middle) and HOMO–1, HOMO and LUMO levels of **PBI-CICN**²⁻ (right), as well as the electrostatic potential maps of the respective derivative (top, isovalue 0.020 a.u.) and b) **PBI-H** as well as the respective reduced states. HOMO, LUMO and LUMO+1 (bottom to top) of c) **PBI-CICN** and d) **PBI-H**. The corresponding orbitals of **PBI-CICN**⁻⁻ and **PBI-CICN**²⁻ and **PBI-H**⁻⁻ and **PBI-H**²⁻ respectively are visually indistinguishable. Orbitals and electrostatic potential maps were calculated using DFT (B3LYP/6-31g(d)).

Fig. S25 HOMO, LUMO and LUMO+1 levels as obtained from DFT calculations of a) **PBI-Ph** (left), the corresponding α - and β -spin MO levels of **PBI-Ph^-** (middle) and HOMO-1, HOMO and LUMO levels of **PBI-Ph²⁻** (right), as well as the electrostatic potential maps of the respective derivative (top, isovalue 0.020 a.u.) and b) **PBI-OPh** as well as the respective reduced states. HOMO, LUMO and LUMO+1 (bottom to top) of c) **PBI-Ph** and d) **PBI-OPh**. The corresponding orbitals of **PBI-Ph^-** and **PBI-Ph²⁻** and **PBI-OPh**. The corresponding orbitals of **PBI-Ph^-** and **PBI-Ph²⁻** and **PBI-OPh**. The corresponding orbitals of **PBI-Ph^-** and **PBI-OPh²⁻** and **PBI-OPh²⁻** respectively are visually indistinguishable. Orbitals and electrostatic potential maps were calculated using DFT (B3LYP/6-31g(d)).

Fig. S26 Chemical structures and atom numbering of PBI-Cl.

Table S4 Comparison of the calculated bond distances and torsion angles of **PBI-Cl**, **PBI-Cl**⁻ and **PBI-Cl**²⁻. The numbering of carbon atoms is according to Fig. S18.

	PBI-Cl	PBI-Cl [⊷]	PBI-Cl ²⁻
C-C (C6a-C6b, C12a-C12b)	146.8 pm	144.8 pm	143.1 – 143.2 pm
C-C (C1-C2, C5-C6, C7-C8,	140.6 pm	138.6 pm	136.9 – 137.0 pm
C11-C12)			
C-C (C2-C3, C4-C5, C8-C9,	138.0 pm	139.6 – 139.7 pm	141.3 – 141.4 pm
C10-C11)			
C-C (C3-C3a, C4-C3a, C9-	141.3 pm	141.4 – 141.5 pm	141.6 – 141.7 pm
C9a, C10-C9a)			
C-C (C3a-C13b, C9a-C13a)	142.0 pm	142.9 pm	143.9 pm
C-C (C13b-C12b, C13b-	143.5 pm	143.6 pm	143.8 pm
Сба, С13а-Сбb, С13а-С12а)			
C-C (C1-C12b, C6-C6a, C7-	140.4 pm	142.2 pm	143.8 – 143.9 pm
C6b, C12-C12a)			
C-C (C3-C3b, C4-C4a, C9-	148.5 pm – 148.6 pm	146.5 – 146.6 pm	144.7 pm
C9b, C10-C10a)			
Torsion angle	35.4°	33.4°/33.5°	31.2°/31.4°

Fig. S27 Transition densities (isovalue = 0.0004 a.u.) of the neutral S_0 - S_1 (left) and dianionic S_0 - S_1 (middle) as well as dianionic S_0 - S_2 (right) transitions of **PBI-ClCN**, **PBI-Cl**, **PBI-H**, **PBI-Ph** and **PBI-OPh**.

Fig. S28 Calculated AICD isosurface plots of PBI, PBI⁻ and PBI²⁻ of a) **PBI-Cl** and b) **PBI-H**. Clockwise ring current is depicted with red arrows and counter clockwise ring current with blue arrows (isosurface value 0.025).

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$162 \rightarrow 165$	6.53	571.03	0.3743
$164 \rightarrow 165$	93.5		
$162 \rightarrow 165$	88.5	564.01	0.0302
$163 \rightarrow 166$	4.49		
$164 \rightarrow 165$	7.02		
$157 \rightarrow 165$	9.01	464.71	0.410
$159 \rightarrow 165$	28.7		
$161 \rightarrow 165$	62.3		
$156 \rightarrow 165$	34.3	460.32	0.0028
$158 \rightarrow 165$	20.3		
$160 \rightarrow 165$	45.4		
$155 \rightarrow 165$	2.52	455.02	0.0641
$156 \rightarrow 165$	2.40		
$157 \rightarrow 165$	32.6		
$159 \rightarrow 165$	27.0		
$161 \rightarrow 165$	35.5		
$156 \rightarrow 165$	8.81	438.60	0.0187
$158 \rightarrow 165$	39.9		
$160 \rightarrow 165$	49.0		
$164 \rightarrow 169$	2.26		
$154 \rightarrow 165$	3.32	425.93	0.0082
$156 \rightarrow 165$	53.5		
$158 \rightarrow 165$	37.0		
$160 \rightarrow 165$	6.18		
$155 \rightarrow 165$	15.0	419.07	0.0158
$157 \rightarrow 165$	11.5		
$159 \rightarrow 165$	9.96		
$164 \rightarrow 166$	52.4		
$155 \rightarrow 165$	15.2	416.80	0.0492
$157 \rightarrow 165$	30.5		
$159 \rightarrow 165$	35.4		
$164 \rightarrow 166$	18.9		

Table S5 Calculated UV/Vis/NIR transitions for PBI-ClCN.

Transitions	% character	$\lambda_{\rm cal}$ [nm]	Oscillator strength f
$165A \rightarrow 166A$	75.9	1036.86	0.0585
$164B \rightarrow 165B$	24.1		
$165A \rightarrow 166A$	24.3	665.96	0.4235
$164B \rightarrow 165B$	74.5		
165A ← 166A	1.2		
$165A \rightarrow 167A$	98.4	647.56	0.0267
$161B \rightarrow 165B$	1.58		
$165A \rightarrow 168A$	100	584.36	0.0011
$160A \rightarrow 166A$	2.91	465.21	0.0597
$164A \rightarrow 168A$	1.60		
$159B \rightarrow 165B$	1.13		
$160B \rightarrow 166B$	1.62		
$161B \rightarrow 165B$	92.7		
$161A \rightarrow 166A$	4.14	448.09	0.0090
$158B \rightarrow 165B$	2.39		
$160B \rightarrow 165B$	90.5		
$161B \rightarrow 166B$	3.01		

Table S6 Calculated UV/Vis/NIR transitions for PBI-ClCN⁻⁻.

Table S7 Calculated UV/Vis/NIR transitions for PBI-ClCN²⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$165 \rightarrow 166$	95.1	719.15	0.5538
165 ← 166	4.92		
$165 \rightarrow 167$	83.6	601.17	0.0499
$165 \rightarrow 169$	16.4		
$165 \rightarrow 168$	100	581.34	0.0029
$165 \rightarrow 167$	15.5	531.39	0.0429
$165 \rightarrow 169$	84.5		
$164 \rightarrow 167$	2.21	342.52	0.0047
$164 \rightarrow 169$	4 32		010017
165 171	7.52		
$163 \rightarrow 1/1$	93.5		

Transitions	% character	$\lambda_{cal}[nm]$	Oscillator strength f
$140 \rightarrow 141$	100	526.58	0.5139
$139 \rightarrow 141$	97.5	418.46	0.0874
$140 \rightarrow 145$	2.48		
$136 \rightarrow 141$	100	393.88	0.0058
$131 \rightarrow 142$	2.15	372.17	0.0268
$132 \rightarrow 141$	35.6		
$133 \rightarrow 141$	12.7		
$135 \rightarrow 141$	49.5		
$130 \rightarrow 141$	3.66	370.97	0.0073
$131 \rightarrow 141$	32.0		
$134 \rightarrow 141$	64.4		
$132 \rightarrow 141$	5.34	631.66	0.0038
$133 \rightarrow 141$	27.9		
$135 \rightarrow 141$	4.45		
$140 \rightarrow 142$	62.3		
$130 \rightarrow 141$	18.3	358.91	0.0040
$131 \rightarrow 141$	58.9		
$134 \rightarrow 141$	20.1		
$140 \rightarrow 143$	2.69		
$132 \rightarrow 141$	47.8	355.69	0.0536
$133 \rightarrow 141$	4.46		
$135 \rightarrow 141$	47.8		

 Table S8 Calculated UV/Vis/NIR transitions for PBI-Cl.

Table S9 Calculated UV/Vis/NIR transitions for PBI-Cl⁻⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$141A \rightarrow 142A$	61.4	830.49	0.0172
$140B \rightarrow 141B$	38.6		
$141A \rightarrow 143A$	98.6	667.64	0.0311
$139B \rightarrow 141B$	1.38		
$141A \rightarrow 142A$	38.9	587.89	0.5735
$140B \rightarrow 141B$	61.1		
$141A \rightarrow 144A$	2.17	427.16	0.0617
$139B \rightarrow 141B$	97.8		
$136B \rightarrow 142B$	2.68	414.57	0.0015
$137B \rightarrow 141B$	93.1		
$138B \rightarrow 142B$	3.09		
$139B \rightarrow 141B$	1.15		

Transitions	% character	$\lambda_{cal}[nm]$	Oscillator strength f
$141 \rightarrow 143$	100	583.22	0.0947
$141 \rightarrow 142$	96.98	571.34	0.6747
141 ← 142	3.02		
$141 \rightarrow 144$	100	441.88	0.0074
$140 \rightarrow 143$	3.40	362.02	0.0082
$141 \rightarrow 145$	4.81		
$141 \rightarrow 146$	91.8		
$140 \rightarrow 143$	97.4	337.46	0.0090
$141 \rightarrow 146$	2.64		
$141 \rightarrow 149$	41.3	300.87	0.0534
$141 \rightarrow 150$	58.7		

Table S10 Calculated UV/Vis/NIR transitions for PBI-Cl²⁻.

Table S11 Calculated UV/Vis/NIR transitions for PBI-H.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$108 \rightarrow 109$	97.4	524.36	0.6922
108 ← 109	2.59		
$102 \rightarrow 109$	23.8	380.11	0.0049
$104 \rightarrow 109$	76.2		
$102 \rightarrow 109$	74.9	365.08	0.0015
$104 \rightarrow 109$	25.1		

Table S12 Calculated UV/Vis/NIR transitions for PBI-H⁻⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$109A \rightarrow 111A$	27.1	773.90	0.0253
$108B \rightarrow 109B$	72.9		
$109A \rightarrow 110A$	100	648.62	0.0342
$103A \rightarrow 110A$	1.17	530.10	0.7603
$109A \rightarrow 111A$	72.8		
$108B \rightarrow 109B$	26.1		

Table S13 Calculated UV/Vis/NIR transitions for PBI-H²⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$109 \rightarrow 110$	100	570.61	0.0938
$109 \rightarrow 111$	97.9	482.09	0.8905
109 ← 111	2.07		
$109 \rightarrow 112$	100	487.44	0.0044

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$188 \rightarrow 189$	100	570.60	0.3555
$186 \rightarrow 190$	2.37	386.66	0.0718
$187 \rightarrow 189$	94.8		
$188 \rightarrow 193$	2.82		
$177 \rightarrow 189$	5.17	377.15	0.2671
$186 \rightarrow 189$	84.4		
$187 \rightarrow 190$	3.47		
$188 \rightarrow 192$	6.99		
$178 \rightarrow 189$	4.57	344.60	0.0086
$179 \rightarrow 189$	69.0		
$181 \rightarrow 189$	6.37		
$188 \rightarrow 191$	20.0		
$176 \rightarrow 189$	2.93	311.14	0.0062
$179 \rightarrow 189$	14.6		
$187 \rightarrow 189$	3.51		
$188 \rightarrow 191$	73.8		
$188 \rightarrow 193$	5.22		
$175 \rightarrow 189$	17.0	306.00	0.0030
$176 \rightarrow 190$	8.68		
$177 \rightarrow 189$	9.72		
$180 \rightarrow 189$	7.49		
$183 \rightarrow 189$	29.4		
$185 \rightarrow 189$	20.0		
$186 \rightarrow 191$	2.51		
$188 \rightarrow 190$	5.20		
$172 \rightarrow 191$	2.34	307.70	0.0023
$175 \rightarrow 190$	16.6		
$176 \rightarrow 189$	68.7		
$176 \rightarrow 195$	5.10		
$177 \rightarrow 190$	3.96		
$188 \rightarrow 191$	3.26		
$175 \rightarrow 189$	28.9	303.94	0.0079
$176 \rightarrow 190$	11.9		
$177 \rightarrow 189$	16.6		
$180 \rightarrow 189$	4.13		
$183 \rightarrow 189$	28.4		
$185 \rightarrow 189$	6.71		
$188 \rightarrow 190$	3.30		

 Table S14 Calculated UV/Vis/NIR transitions for PBI-Ph.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$189A \rightarrow 190A$	26.8	821.94	0.0108
$185B \rightarrow 190B$	1.52		
$188B \rightarrow 189B$	71.7		
$185A \rightarrow 191A$	1.66	679.33	0.4376
$189A \rightarrow 190A$	72.5		
$189A \rightarrow 193A$	1.31		
$185B \rightarrow 190B$	1.55		
$188B \rightarrow 189B$	23.0		
$188A \rightarrow 200A$	1.28	626.34	0.0888
$189A \rightarrow 191A$	97.6		
$186B \rightarrow 189B$	1.12		
$188A \rightarrow 191A$	7.39	503.73	0.0035
$188A \rightarrow 194A$	2.47		
$189A \rightarrow 192A$	70.1		
$189A \rightarrow 202A$	8.49		
$184B \rightarrow 189B$	2.05		
$187B \rightarrow 189B$	3.79		
$188B \rightarrow 191B$	5.68		
$188A \rightarrow 192A$	6.02	456.13	0.0041
$188A \rightarrow 202A$	1.17		
$189A \rightarrow 194A$	78.0		
$189A \rightarrow 199A$	6.10		
$189A \rightarrow 201A$	7.53		
$188B \rightarrow 192B$	1.18		
$188A \rightarrow 191A$	13.8	426.04	0.0184
$189A \rightarrow 192A$	17.7		
$189A \rightarrow 200A$	6.95		
$170B \rightarrow 189B$	1.62		
$184B \rightarrow 189B$	10.4		
$187B \rightarrow 189B$	26.0		
$188B \rightarrow 191B$	23.6		
$183A \rightarrow 193A$	1.29	399.00	0.0318
$186A \rightarrow 192A$	5.49		
$187A \rightarrow 191A$	1.23		
$188A \rightarrow 195A$	4.49		
$189A \rightarrow 193A$	83.6		
$189A \rightarrow 204A$	1.59		
$186B \rightarrow 192B$	2.31		
$188A \rightarrow 191A$	1.62	382.54	0.0111
$180B \rightarrow 191B$	1.17		
$184B \rightarrow 189B$	35.9		
$186B \rightarrow 190B$	6.89		
$187B \rightarrow 189B$	49.7		
$188B \rightarrow 191B$	4.74		

Table S15 Calculated UV/Vis/NIR transitions for PBI-Ph⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$189 \rightarrow 190$ $189 \rightarrow 193$	92.9 7.11	575.80	0.5119
$\begin{array}{c} 189 \rightarrow 191 \\ 189 \rightarrow 199 \end{array}$	96.6 3.45	548.14	0.2973
$189 \rightarrow 192$ $189 \rightarrow 200$ $189 \rightarrow 202$	93.3 3.18 3.52	520.90	0.0359
$188 \rightarrow 192$ $189 \rightarrow 194$ $189 \rightarrow 199$ $189 \rightarrow 201$	2.52 50.9 31.5 15.0	450.41	0.0440
$\begin{array}{c} 189 \rightarrow 190 \\ 189 \rightarrow 193 \end{array}$	7.55 92.4	433.96	0.1845
$189 \rightarrow 192$ $189 \rightarrow 95$ $189 \rightarrow 200$	2.11 95.4 2.48	387.68	0.0106
$\begin{array}{c} 189 \rightarrow 194 \\ 189 \rightarrow 199 \end{array}$	48.1 51.9	374.13	0.0375

Table S16 Calculated UV/Vis/NIR transitions for PBI-Ph²⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$204 \rightarrow 205$	100	477.05	0.6518
$194 \rightarrow 205$	2.48	359.77	0.2252
$197 \rightarrow 205$	3.52		
$202 \rightarrow 205$	10.4		
$203 \rightarrow 205$	83.6		
$197 \rightarrow 205$	6.19	348.76	0.1206
$201 \rightarrow 205$	12.0		
$202 \rightarrow 205$	72.6		
$203 \rightarrow 205$	9.12		
$197 \rightarrow 205$	5.08	303.96	0.0225
$201 \rightarrow 205$	62.7		
$202 \rightarrow 205$	22.6		
$203 \rightarrow 207$	4.36		
$204 \rightarrow 207$	5.25		
$189 \rightarrow 205$	5.99	298.51	0.0031
$204 \rightarrow 206$	94.0		
$187 \rightarrow 205$	3.95	292.17	0.0130
$188 \rightarrow 205$	4.29		
$190 \rightarrow 205$	11.8		
$197 \rightarrow 205$	23.1		
$198 \rightarrow 205$	2.68		
$199 \rightarrow 205$	7.84		
$200 \rightarrow 205$	10.2		
$203 \rightarrow 205$	9.09		
$204 \rightarrow 207$	22.9		
$204 \rightarrow 208$	4.16		
$188 \rightarrow 205$	5.82	290.90	0.0156
$190 \rightarrow 205$	5.06		
$194 \rightarrow 205$	9.93		
$197 \rightarrow 205$	4.03		
$199 \rightarrow 205$	7.11		
$200 \rightarrow 205$	25.6		
$201 \rightarrow 205$	11.0		
$204 \rightarrow 207$	31.5		

Table S17 Calculated UV/Vis/NIR transitions for PBI-OPh.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$205A \rightarrow 206A$	73.3	767.46	0.0624
$204B \rightarrow 205B$	26.7		
$204A \rightarrow 217A$	1.17	634.20	0.0644
$205A \rightarrow 207A$	98.8		
$198A \rightarrow 207A$	1.47	570.46	0.6470
$205A \rightarrow 206A$	25.6		
$198B \rightarrow 206B$	1.99		
$204B \rightarrow 205B$	70.9		
$204A \rightarrow 218A$	2.11	424.98	0.0117
$205A \rightarrow 208A$	22.4		
$205A \rightarrow 210A$	2.70		
$205A \rightarrow 211A$	3.70		
$205A \rightarrow 212A$	22.5		
$205A \rightarrow 213A$	8.06		
$205A \rightarrow 214A$	32.7		
$205A \rightarrow 215A$	4.50		
$205A \rightarrow 218A$	1.33		
$204A \rightarrow 207A$	1.24	356.10	0.1527
$196B \rightarrow 205B$	3.21		
$197B \rightarrow 205B$	5.12		
$202B \rightarrow 205B$	3.42		
$202B \rightarrow 206B$	2.46		
$203B \rightarrow 205B$	79.4		
$203B \rightarrow 206B$	5.11		
$204A \rightarrow 207A$	2.82	349.43	0.0285
$195B \rightarrow 205B$	1.44		
$196B \rightarrow 205B$	6.79		
$201B \rightarrow 205B$	6.44		
$202B \rightarrow 205B$	72.6		
$202B \rightarrow 206B$	5.76		
$203B \rightarrow 205B$	1.73		
$203B \rightarrow 206B$	2.39		
$204A \rightarrow 207A$	6.83	328.69	0.0108
$205A \rightarrow 210A$	5.16		
$205A \rightarrow 212A$	4.90		
$205A \rightarrow 214A$	1.64		
$205A \rightarrow 217A$	11.1		
$205A \rightarrow 218A$	17.5		
$196B \rightarrow 205B$	20.4		
$204B \rightarrow 207B$	32.4		

Table S18 Calculated UV/Vis/NIR transitions for PBI-OPh⁻⁻.

Transitions	% character	λ_{cal} [nm]	Oscillator strength f
$205 \rightarrow 206$	4.54	555.80	0.2046
$205 \rightarrow 207$	70.3		
$205 \rightarrow 208$	2.66		
$205 \rightarrow 209$	18.0		
$205 \rightarrow 211$	4.50		
$205 \rightarrow 206$	97.2	550.25	0.7577
$205 \rightarrow 207$	2.82		
$205 \rightarrow 207$	6.39	430.38	0.0355
$205 \rightarrow 208$	26.6		
$205 \rightarrow 209$	22.4		
$205 \rightarrow 210$	2.30		
$205 \rightarrow 211$	3.78		
$205 \rightarrow 212$	5.88		
$205 \rightarrow 216$ $205 \rightarrow 221$	20.3 2.22		
$203 \rightarrow 221$	45.1	429.54	0.0054
$203 \rightarrow 208$ $205 \rightarrow 209$	10 /	429.34	0.0054
$205 \rightarrow 209$	17.0		
$205 \rightarrow 210$ $205 \rightarrow 211$	3 23		
$205 \rightarrow 212$	2.60		
$205 \rightarrow 213$	8.10		
$205 \rightarrow 217$	4.71		
$205 \rightarrow 220$	4.83		
$205 \rightarrow 222$	3.98		
$205 \rightarrow 207$	4.40	412.89	0.0018
$205 \rightarrow 208$	12.5		
$205 \rightarrow 209$	40.8		
$205 \rightarrow 210$	31.9		
$205 \rightarrow 211$	5.27		
$205 \rightarrow 213$	5.03	2010 20	0.0001
$205 \rightarrow 207$	14.0	396.20	0.0321
$205 \rightarrow 208$	9.85		
$205 \rightarrow 209$	11.5		
$203 \rightarrow 210$ $205 \rightarrow 212$	13.8		
$203 \rightarrow 212$ $205 \rightarrow 216$	20.5		
$205 \rightarrow 210$	3.88	392.47	0.0241
$205 \rightarrow 207$ $205 \rightarrow 210$	17.9	572.77	0.0241
$205 \rightarrow 211$	73.9		
$205 \rightarrow 212$	4.27		
$205 \rightarrow 208$	9.04	380.94	0.0126
$205 \rightarrow 210$	17.0		
$205 \rightarrow 211$	5.89		
$205 \rightarrow 212$	13.9		
$205 \rightarrow 213$	21.5		
$205 \rightarrow 216$	20.4		
$205 \rightarrow 217$	3.10		
$205 \rightarrow 219$	3.32		
$205 \rightarrow 220$	5.89	262.42	0.0116
$205 \rightarrow 211$	4.97	363.43	0.0446
$200 \rightarrow 212$	30.2 20.7		
$\begin{array}{c} 200 \rightarrow 213 \\ 205 \rightarrow 216 \end{array}$	50.7 8.15		
$203 \rightarrow 210$ $205 \rightarrow 213$	0.15	350.44	0.0162
$203 \rightarrow 213$ $205 \rightarrow 214$	93.9	550.44	0.0102
$203 \rightarrow 214$ $205 \rightarrow 216$	2.67		
200 . 210	2.07	L	l

 Table S19 Calculated UV/Vis/NIR transitions for PBI-OPh²⁻.

	μ_{eg} (Experimental) [D] ^[a]		μ_{eg} (Calculated) [D] ^[b]			
	PBI	PBI'-	PBI ²⁻	PBI	PBI-	PBI ²⁻
PBI-CICN	_[c]	_[c]	_[c]	6.7	3.6	9.2
PBI-Cl	8.7	3.8	12.6	7.6	1.7	9.1
PBI-H	8.8	3.4	3.5	8.8	2.2	3.4
PBI-Ph	6.4	3.1	10.0	6.6	8.0	8.0
PBI-OPh	8.7	3.5	12.4	8.1	3.2	9.4

Table S20 Experimental and calculated transition dipole moments (μ_{eg}) of the PBIs in Debye.

[a] Obtained by integration of the respective S_0 - S_1 or D_0 - D_1 transition (see Table S21). [b] Taken from the TD-DFT calculations of the absorption spectra performed by the Multiwfn program.^[85] [c] Not determined due to possible significant overestimation as multiple transitions are present in the respective absorption bands.

The transition dipole moment (μ_{eg}) has been calculated from the integral of the lowest energy absorption band according to equation S1

$$\left|\mu_{\rm eg}\right|^2 = \frac{3hc\varepsilon_0 \ln 10}{2\pi^2 N_{\rm A}} \cdot \int_{\widetilde{v}_1}^{\widetilde{v}_2} \frac{\varepsilon(\widetilde{v})}{\widetilde{v}} d\widetilde{v}, \qquad (S1)$$

with the molar extinction coefficient $\varepsilon(\tilde{v})$, speed of light $c = 2.9979 \cdot 10^{10} \text{ cm s}^{-1}$, Planck's constant $h = 6.6262 \cdot 10^{-34}$ Js, permittivity $\varepsilon_0 = 8.8542 \cdot 10^{-12}$ F m⁻¹ and Avogadro's number $N_A = 6.0221 \cdot 10^{23} \text{ mol}^{-1}$.

Table S21 Integration areas for the determination of the transition dipole moments (μ_{eg}) according to equation S1 of the PBIs from the experimental absorption spectra (Table S20).

	PBI	PBI-	PBI ²⁻
PBI-Cl	440-580 nm	980-1125 nm	530-760 nm
PBI-H	400-600 nm	900-1025 nm	630-700 nm
PBI-Ph	510-715 nm	1010-1285 nm	525-735 nm
PBI-OPh	480-625 nm	1030-1165 nm	515-790 nm

6. Supporting References

- [S1] B. Pagoaga, L. Giraudet and N. Hoffmann, Eur. J. Org. Chem., 2014, 5178-5195.
- [S2] J. Heitmüller, K. Eckstein, R. Renner, M. Stolte, T. Hertel, F. Würthner and T. Brixner, *Spectrochim Acta*, *Part A*, 2021, 253, 119567.
- [S3] G. Seybold and G. Wagenblast, *Dyes Pigm.*, 1989, **11**, 4, 303-317.
- [S4] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S5] T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- [S6] W. Yue, W. Jiang, M. Bockmann, N. L. Doltsinis and Z. H. Wang, *Chem. Eur. J.*, 2014, 20, 5209-5213.
- [S7] S. Seifert, D. Schmidt and F. Würthner, *Chem. Sci.*, 2015, 6, 1663-1667.
- [S8] J. Sworakowski, J. Lipiński and K. Janus, Org. Electron., 2016, 33, 300-310.
- [S9] S. J. Borg and S. P. Best, J. Electroanal. Chem., 2002, 535, 57-64.