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Materials and Instruments

All the chemicals and reagents were purchased from commercial sources and used as 

received without further purification. 1H and 13C NMR spectra were measured on a 

Bruker AV 500 spectrometer in deuterated dichloromethane. High resolution mass 

spectra (HRMS) were recorded on a GCT premier CAB048 mass spectrometer 

operating in MALDI-TOF mode. TGA analysis was carried out on a TA TGA Q5000 

and DSC analysis was performed on a DSC Q1000 under dry nitrogen at a heating rate 

of 10 oC min-1. UV-vis absorption spectra were measured on a Shimadzu UV-2600 

spectrophotometer. Photoluminescence spectra were recorded on a Horiba Fluoromax-

4 spectrofluorometer. Fluorescence quantum yields were measured using a Hamamatsu 

absolute PL quantum yield spectrometer C11347 Quantaurus_QY. Fluorescence 

lifetimes were determined with a Hamamatsu C11367-11 Quantaurus-Tau time-

resolved spectrometer. The frontier orbitals of the molecules based on the ground state 

geometries were calculated at B3LYP/6-31G (d,p) by Gaussian 09 program. Cyclic 

voltammetry (CV) were performed on a CHI 610E A14297 in a solution of tetra-n-

butylammonium hexafluorophosphate (Bu4NPF6) (0.1 M) in dichloromethane (DCM) 

or dimethylformamide (DMF) at a scan rate of 100 mV s‒1, using a platinum wire as 

the auxiliary electrode, a glass carbon disk as the working electrode and Ag/Ag+ as the 

reference electrode. HOMO = − [Eox − E1/2(Fc/Fc+) + 4.8] eV, LUMO = − [Ered − 

E1/2(Fc/Fc+) + 4.8] eV, where Eox and Ered represent the onset oxidation potential and 

the reduction potential relative to Fc/Fc+ (4.8 eV), respectively, and E1/2 (Fc/Fc+) 

represents the calibrated value.
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Scheme S1 Synthetic routes to TPA-An-Ph and TPA-An-mPhCz.
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Synthesis of 4-(10-bromoanthracen-9-yl)-N,N-diphenylaniline (TPA-An-Br)

Compound 1 (500 mg, 1.73 mmol), compound 2 (400 mg, 1.19 mmol), anhydrous 

potassium carbonate (492 mg, 3.57 mmol) and Pd(PPh3)4 (69 mg, 0.06 mmol) were 

added into a 100 ml two neck round bottom flask under N2, then tetrahydrofuran (THF, 

6 mL) and water (1 mL) was injected into the flask. The reaction solution was stirred 

at 74 oC for 6 h. After cooling to room temperature, the solution was poured into water 

and extracted with DCM for three times, and then organic phase was combined and 

dried over anhydrous magnesium sulfate. After filtration, the organic phase was 

concentrated by a rotary evaporator under reduced pressure, and the residue was 

purified by a silica gel column chromatography using PE/DCM (1:1 v/v) as eluent. 
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Yellow solid of TPA-An-Br was obtained in 81.0% (482 mg). 1H NMR (500 MHz, 

CD2Cl2), δ (TMS, ppm): 9.32 (d, 1H), 8.55 (d, 1H), 8.34 (d, 1H), 8.17 (d, 1H), 8.06 (t, 

2H), 7.97 (d, 4H), 7.87 (t, 1H). 13C NMR (125 MHz, CD2Cl2), δ (TMS, ppm): 149.04, 

148.81, 139.21, 133.23, 133.07, 132.54, 131.56, 130.68, 128.95, 128.81, 128.35, 

126.81, 125.97, 124.49, 124.36, 123.51.

N

TPA-An-Ph

Synthesis of N,N-diphenyl-4-(10-phenylanthracen-9-yl)aniline (TPA-An-Ph)

TPA-An-Ph was obtatined according previous work.1 1H NMR (500 MHz, CD2Cl2), δ 

(TMS, ppm): 7.84 (d, 2H), 7.61 (d, 2H), 7.58-7.54 (m, 3H), 7.46 (2H, d), 7.36-7.25 

(16H, m), 7.08 (m, 2H). 13C NMR (125 MHz, CD2Cl2), δ (TMS, ppm): 148.63, 148.04, 

139.83, 137.18, 133.48, 132.88, 132.05, 130.14, 129.20, 127.76, 127.66, 125.34, 

124.11, 123.83. HRMS (C38H27N): m/z 497.2137 (M+, calcd 497.2143).

N

N

TPA-An-mPhCz

Synthesis of 4-(10-(3-(9H-carbazol-9-yl)phenyl)anthracen-9-yl)-N,N-diphenylaniline 

(TPA-An-mPhCz)

TPA-An-mPhCz was synthesized by similar procedures as TPA-An-Br from the 

reagents of 4 and TPA-An-Br in 86% yield. 1H NMR (500 MHz, CD2Cl2), δ (TMS, 

ppm): 8.15 (d, 2H), 7.85-7.72 (m, 5H), 7.73 (t, 1H), 7.60 (m, 3H), 7.42 (m, 6H), 7.34-
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7.26 (d, 13H), 7.09 (d, 2H). 13C NMR (125 MHz, CD2Cl2), δ (TMS, ppm): 149.14, 

148.63, 142.35, 142.05, 139.23, 138.83, 136.94, 133.39, 133.37, 131.60, 131.41, 

131.34, 131.22, 130.87, 130.67, 128.46, 127.91, 127.32, 126.75, 126.38, 125.90, 

124.75, 124.60, 124.59, 124.39, 121.54, 121.35, 111.16. HRMS (C49H34N2): m/z 

662.2729 (M+, calcd 662.2722).
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Fig. S1. PL spectra of DPA, TPA-An-Ph and TPA-An-mPhCz in THF soultions.ex: 
360 nm; concentration: 10 μM.



S6

400 450 500 550

400 450 500 550 600 650

400 450 500 550 600 650

 A 

PL
 in

te
ns

ity
 (a

u)

Wavelength (nm)

 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

DPA

fw (vol%)

TPA-An-Ph

fw (vol%)

PL
 in

te
ns

ity
 (a

u)

Wavelength (nm)

 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 B 

TPA-An-mPhCz

fw (vol%) C 

PL
 in

te
ns

ity
 (a

u)

Wavelength (nm)

 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

Fig. S2. PL spectra of (A) DPA, (B) TPA-An-Ph and (C) TPA-An-mPhCz in 
THF/water mixtures with different water fractions. ex: 360 nm; concentration: 10 μM.
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Table S1. Detailed absorption and emission peaks of DPA in different solvents
solvents ɛ n f(ɛ,n) λa [nm] λf [nm] νa-νf [cm-1]

hexane 1.90 1.375 0 392 406 880

toulene 2.40 1.497 0.013 395 409 867

triethylamine 2.42 1.401 0.048 392 406 880

isopropyl ether 3.88 1.386 0.145 392 405 819

chloroform 4.80 1.446 0.148 396 411 921

ethyl acetate 5.10 1.372 0.200 392 406 880

tetrahydrofuran 7.58 1.407 0.210 395 409 867

dichloromethane 8.93 1.424 0.217 395 410 926

Table S2. Detailed absorption and emission peaks of TPA-An-Ph in different solvents
solvents ɛ n f(ɛ,n) λa [nm] λf [nm] νa-νf [cm-1]

hexane 1.90 1.375 0 393 433 2350

toulene 2.40 1.497 0.013 396 449 2981

triethylamine 2.42 1.401 0.048 394 440 2653

isopropyl ether 3.88 1.386 0.145 393 449 3174

chloroform 4.80 1.446 0.148 397 460 3450

ethyl acetate 5.10 1.372 0.200 394 468 4013

tetrahydrofuran 7.58 1.407 0.210 395 469 3995

dichloromethane 8.93 1.424 0.217 396 494 5010

Table S3. Detailed absorption and emission peaks of TPA-An-mPhCz in different 
solvents

solvents ɛ n f(ɛ,n) λa [nm] λf [nm] νa-νf [cm-1]

hexane 1.90 1.375 0 393 437 2562

toulene 2.40 1.497 0.013 397 456 3259

triethylamine 2.42 1.401 0.048 395 448 3124

isopropyl ether 3.88 1.386 0.145 393 453 3370

chloroform 4.80 1.446 0.148 397 476 4181

ethyl acetate 5.10 1.372 0.200 394 472 4194

tetrahydrofuran 7.58 1.407 0.210 396 476 4244

dichloromethane 8.93 1.424 0.217 397 496 5028
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Fig. S3. PL spectra of the films of DPA, TPA-An-Ph and TPA-An-mPhCz at 77 K.ex: 
360 nm.
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Fig. S4. PL lifetime decays of DPA, TPA-An-Ph and TPA-An-mPhCz (A) in THF 
solutions (concentration: 10 μM) and (B) film state. ex: 360 nm.
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Fig. S5. TGA thermograms (left) and DSC curve (right) of TPA-An-Ph and TPA-An-
mPhCz, recorded under nitrogen at a heating rate of 10 oC/min.
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Fig. S6. Cyclic voltammograms of TPA-An-Ph and TPA-An-mPhCz, measured in 
dichloromethane containing 0.1 M tetra-n-butylammonium hexafluorophosphate.

Table S4. Photophysical, thermal and electronic properties of TPA-An-Ph and TPA-
An-mPhCz

a) Measured in oxygen-free THF solution at room temperature (10-5 M). b) Measured in 
thin film. c) The absolute PL quantum yield. d) PL lifetimes at room temperature under 
air conditions. e) Measured by cyclic voltammetry.

τd [ns]
compounds

λabs
a) [nm]

sol

λPL [nm]

sola) /filmb)

ΦPL
c) [%]

sola) /filmb) sola) /filmb)
Td [oC ] Tg [°C]

HOMO/LUMOe) 

[eV]

TPA-An-Ph 360 469/460 30.0/40.1 3.45/1.95 362 - -5.20/-2.51

TPA-An-mPhCz 360 478/470 57.8/65.1 3.85/3.58 411 - -5.22/-2.52
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Fig. S7. Electroluminescence (EL) spectra of device B1 at various voltages.
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Fig. S8. Power efficiency versus luminanc curves of the non-doped OLEDs using TPA-
An-Ph and TPA-An-mPhCz as EMLs.

Table S5. EL performance of TPA-An-Ph and TPA-An-mPhCz based non-doped 
devices

device Von(V) L
max

(cd/m
2
) CE

a)
(cd/A)

 
PE

a)
(lm/W)

 
EQE

a)
(%) λ

max

b)
(nm) CIE (x, y)

b)

B1 3.2 4737 5.54/4.86 5.02/3.05 4.51/4.02 460 (0.14, 0.16)

B2 3.0 13335 10.62/9.09 10.42/7.14 8.10/6.97 470 (0.14, 0.17)

a) Order of maximum, then values at 1000 cd m-2; b) Measured at 1000 cd m-2. Device 
configuration: ITO/HAT-CN (5 nm)/TAPC (60 nm)/TCTA (5 nm)/EML (20 
nm)/TmPyPB (40 nm)/LiF (1 nm)/Al. Devices B1 and B2 refer to the EMLs of TPA-
An-Ph and TPA-An-mPhCz, respectively.
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Fig. S9 (A) Current density-voltage-luminance (J-V-L) characteristics of TPA-An-
mPhCz-based doped devices 1-3. (B) Electroluminescence (EL) spectra of TPA-An-
mPhCz-based doped devices 1-3. at various voltages. (C) CE and (D) EQE versus 
luminance curves of t TPA-An-mPhCz-based doped devices 1-3. Device configuration: 
ITO/HAT-CN (5 nm)/TAPC (60 nm)/TCTA (5 nm)/EML (20 nm)/TmPyPB (40 
nm)/LiF (1 nm)/Al; Device 1: EML: 26DCZPPy:TPB-An-mphCz 10%; Device2: 
EML: 26DCZPPy:TPB-An-mphCz 20%; Device3: EML: 26DCZPPy:TPB-An-mphCz 
50%.
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Fig. S10 EL spectra of TPA-An-mPhCz-based doped devices 1-3 at various voltages.
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Fig. S11. Power efficiency versus luminanc curves of the TPA-An-mPhCz-based doped 
OLEDs
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Table S6. EL performance of TPA-An-mPhCz based doped devices

device Von(V) L
max

(cd/m
2
) CE

a)
(cd/A)

 
PE

a)
(lm/W)

 
EQE

a)
(%) λ

max

b)
(nm) CIE (x, y)

b)

1 4.0 11363 5.47/4.20 4.29/2.36 5.04/4.13 458 (0.14, 0.12)

2 4.0 14092 6.90/5.26 5.42/3.18 5.60/4.50 462 (0.14, 0.14)

3 3.8 16692 7.82/7.39 5.85/4.83 5.60/5.30 474 (0.14, 0.19)

a) Order of maximum, then values at 1000 cd m-2; b) Measured at 1000 cd m-2. Device 
configuration: ITO/HAT-CN (5 nm)/TAPC (60 nm)/TCTA (5 nm)/EML (20 
nm)/TmPyPB (40 nm)/LiF (1 nm)/Al; Device 1: EML: 26DCZ:TPB-An-mphCz 10%; 
Device2: EML: 26DCZ:TPB-An-mphCz 20%; Device3: EML: 26DCZ:TPB-An-
mphCz 50%.
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Fig. S12. Upper: the phosphorescence of Platinum octaethylporphyrin (PtOEP) in THF 
at 77 K, excited by 550 nm; lower: the phosphorescence of TPA-An-mPhCz in THF at 
77 K, excited by 550 nm, measured in a mixture of PtOEP (10-4 M) + TPA-An-mPhCz 
(10-4 M) in THF.
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Fig. S13. Possible TTU transitions of TPA-An-Ph. Molecular orbitals related to TTU 
transitions from 3(TT) to Sn in TPA-An-Ph.
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Fig. S14. Possible TTU transitions of TPA-An-mPhCz. Molecular orbitals related to 
TTU transitions from 3(TT) to Sn in TPA-An-mPhCz.

Table S7. Electronic transitions calculated by B3LYP/6-311G(d,p) of Sn with energies 
lower than twice the T1 energy (~3.46 eV) and Tm with energies in the range of 3.4-
3.50 eV

compounds state energy (eV) transition percentage contribution (%)

S1 2.8923 HOMO→LUMO 96.77

S2 3.1209 HOMO-1→LUMO 95.75

HOMO-2→LUMO 36.22

HOMO-1→LUMO+1 24.15

HOMO-1→LUMO+3 10.67

TPA-An-Ph

T7 3.4232

HOMO→LUMO+3 17.83

S1 2.8304 HOMO→LUMO 98.39

S2 3.1025 HOMO-1→LUMO 96.21

S3 3.1876 HOMO-2→LUMO 98.39

HOMO-4→LUMO 34.45T10 3.4206

HOMO-1→LUMO+2 27.92

HOMO-2→LUMO+2 30.39

TPA-An-mPhCz

T11 3.4610

HOMO-2→LUMO+3 11.94
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Table S8. Spin-orbit matrices related to possible TTU transitions from 3(TT) to Sn for 
the anthracene derivatives

compound transition SOC matrix
related molecular 

orbitals

<HOMO│Hso│HOMO-2>

<HOMO│Hso│HOMO-1>

<LUMO│Hso│LUMO+1>

3T1T1→S1 <S1│Hso│T7>

<LUMO│Hso│LUMO+3>

TPA-An-Ph

3T1T1→S2 <S2│Hso│T7> <HOMO-1│Hso│HOMO-2>

Figure S10

<HOMO│Hso│HOMO-4>

<HOMO│Hso│HOMO-1>

<S1│Hso│T10>

<LUMO│Hso│LUMO+2>

<HOMO│Hso│HOMO-2>

3T1T1→S1

<S1│Hso│T11>

<LUMO│Hso│LUMO+3>

<S2│Hso│T10> <HOMO-1│Hso│HOMO-4>3T1T1→S2

<S2│Hso│T11> <HOMO-1│Hso│HOMO-2>

TPA-An-mPhCz

3T1T1→S3 <S3│Hso│T10> <HOMO-2│Hso│HOMO-4>

Figure S12
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