Supporting Information

Title: Tailoring the Multistability of Origami-Inspired, Buckled Magnetic Structures via Compression and Creasing

Yi Li¹, Samuel J. Avis¹, Teng Zhang*, Halim Kusumaatmaja*, Xueju Wang*

Figure S1. Deformation and recovery of state 1 of the 3-crease ribbon structure. Scale bars, 2 mm.

Figure S2. Schematic illustration of the dimensions of creases and non-crease segments.

Figure S3. Multistable states of a creased-ribbon structure array under the strain of 0%, 8%, 14%, 18% and 28%, 34%, respectively. Scale bars, 3 mm.

Figure S4. Reconfiguration of a multistable biomimetic insect. (A) Three stable states of the structure from being completely flat to being fully standing. Scale bars, 2 mm. (B) Snapshots of the motions of the structure, including forward, backward, lateral forward, and lateral backward states. Please note that the states shown in Figure S2B are not stable. Scale bars, 2 mm.

Figure S5. (A) Reconfiguration of a biomimetic butterfly structure and flower structure. Scale bars, 4 mm. (B) Experimental demonstration of the hold-release behavior of a drug-release system based on the magnetic actuation strategy. Scale bars, 4 mm.

t ₁ /t ₂	State 1	State 2	State 3	State 4		
0.25	\sim	x	\langle	x		
0.33		x		\sim		
0.4		x	\sim	x		
0.46		\sim	\sim	x		
0.56	\langle	\langle	x	x		
0.67	\langle	x	x	x		
1	\langle	x	x	x		

Table S1. Effect of the crease thickness ratio on the multistability ofthe ribbon structure (strain: 14%; L1/L2: 0.32)

L ₁ /L ₂	State 1	State 2	State 3	State 4
1		x	\langle	
0.56			\langle	\sim
0.32			\sim	x
0.18			x	x
0.1		x	x	x

Table S2: Effect of the crease length ratio on the multistability of
the ribbon structure (strain: 14%; t1/t2: 0.46)

Legends for supplementary movies 1 to 7

Supplementary Movie 1. Dynamic progression of the five regimes of the ribbon structure shown in Figure 2A when the compressive strain increases from 0% to 40%, as well as magnetic reconfiguration among the stable states within each regime.

Supplementary Movie 2. A single pathway (P_{1-2}) along which the structure is reconfigured between states S1 and S2, at a strain of 8% and crease number of 3.

Supplementary Movie 3. Three pathways (P₁₋₂, P₁₋₃ and P₂₋₃) at the strain of 14% and crease number of 3. (A) A single pathway (P₁₋₂) along which the structure is reconfigured between states S1 and S2. (B) A single pathway (P₁₋₃) along which the structure is reconfigured between states S1 and S3. (C) A single pathway (P₂₋₃) along which the structure is reconfigured between states S2 and S3.

Supplementary Movie 4. Two pathways (P_{1-2^*-3} and P_{1-3}), at the strain of 18% and crease number of 3. (A) A merged pathway (P_{1-2^*-3}) along which the structure is reconfigured between states S1 and S3. 2* denotes that state S2 is no longer stable. (B) A single pathway (P_{1-3}) along which the structure is reconfigured between states S1 and S3.

Supplementary Movie 5. Three pathways (P_{1-2*-3}, P₁₋₃ and P₃₋₄) at the strain of 24% and crease number of 3. Scale bar, 2 mm. (A) A merged pathway (P_{1-2*-3}) along which the structure is reconfigured between states S1 and S3. (B) A single pathway (P₁₋₃) along which the structure is reconfigured between states S1 and S3. (C) A single pathway (P₃₋₄) along which the structure is reconfigured between states S3 and S4.

Supplementary Movie 6. Two merged pathways ($P_{1-2^*-3^*-4}$ and P_{1-3^*-4}) at the strain of 34% and crease number of 3. Scale bar, 2 mm. (A) A merged pathway ($P_{1-2^*-3^*-4}$) along which the structure is reconfigured between states S1 and S4. (B) A merged pathway (P_{1-3^*-4}) along which the structure is reconfigured between states S1 and S4.

Supplementary Movie 7. Remote, magnetic actuation process of an origami-inspired multistable robot.