Supporting Information

Direct Intercalation of MoS₂ and WS₂ Thin Films by Vacuum Filtration

Ding-Yuan Kuo and Brandi M. Cossairt*

Department of Chemistry, University of Washington, Seattle, WA 98195

*cossairt@uw.edu

Figure S1. Raman spectrum of chemically exfoliated MoS₂. Signatures from 1T MoS₂ are labeled as J_1 , J_2 and J_3 peaks at 156 cm⁻¹, 226 cm⁻¹ and 333 cm⁻¹.^{1,2}

Figure S2 UV-Vis spectrum of chemically exfoliated MoS₂. The 70 % of 1T phase was determined by the extinction at 410 nm over 350 nm as well as the calibration curve in Ref 3.

Figure S3 Raman spectrum of chemically exfoliated WS₂. Signatures from 1T WS₂ are labeled as J_1 , J_2 and J_3 .⁴

Figure S4 A SEM cross sectional image of a representative restacked WS₂ film.

Sample	Lattice constant (Å)
Restacked MoS ₂	~ 6.2
Cp ₂ Fe-MoS ₂	~ 11.8
(MeCp) ₂ Fe-MoS ₂	~ 11.8
(Me ₅ Cp) ₂ Fe -MoS ₂	~ 13.3
Restacked WS ₂	~ 6.2
Cp ₂ Fe-WS ₂	~ 11.8
(MeCp) ₂ Fe-WS ₂	~ 11.7
(Me ₅ Cp) ₂ Fe-WS ₂	~ 13.4

Table S1 Lattice constant of metallocene intercalated MoS2 and WS2.

Table S2 Compositions of the phenazine intercalated MoS_2 and WS_2 from CHN elemental analysis. Calculated mass percentages are shown in the brackets.

	Mass percentage			Approximate
Sample	С	Η	Ν	formula
Phenazine-MoS ₂	9.154	0.76	1.326	(C12H8N2)0.085(C7H8)0.051MoS2
	(9.183)	(0.609)	(1.322)	
Phenazine -WS ₂	5.467	0.654	0.745	$(C_{12}H_8N_2)_{0.071}(C_7H_8)_{0.051}WS_2$
	(5.470)	(0.371)	(0.749)	

Table S3 Compositions of the *p*-benzoquinone intercalated MoS_2 and WS_2 from CHN elemental analysis. Calculated mass percentages are shown in the brackets.

	Mass percentage			Approximate
Sample	С	Н	Ν	formula
Quinone-MoS ₂	6.151	0.614	0.091	$(C_{6}H_{4}O_{2})_{0.090}(C_{7}H_{8})_{0.051}MoS_{2}$
	(6.174)	(0.444)	(0)	
Quinone -WS ₂	4.56	0.38	0.04	$(C_6H_4O_2)_{0.108}(C_7H_8)_{0.051}WS_2$
	(4.567)	(0.320)	(0)	

Figure S5. XRD of the toluene treated (a) MoS_2 and (b) WS_2 .

References

- 1 S. Jiménez Sandoval, D. Yang, R. F. Frindt and J. C. Irwin, *Phys. Rev. B*, 1991, **44**, 3955–3962.
- 2 M. Calandra, Phys. Rev. B Condens. Matter Mater. Phys., 2013, 88, 245428.
- K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand, N. McEvoy, Z.
 Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G. S. Duesberg, V. Nicolosi, F.
 Hauke, A. Hirsch, J. N. Coleman and C. Backes, *ACS Nano*, 2015, 9, 6018–6030.
- 4 D. Pierucci, J. Zribi, C. Livache, C. Gréboval, M. G. Silly, J. Chaste, G. Patriarche, D. Montarnal, E. Lhuillier, A. Ouerghi and B. Mahler, *Appl. Phys. Lett.*, 2019, **115**, 032102.