Supplementary Information

Room-temperature synthesis of blue-emissive zero-dimensional cesium indium halide quantum dots for temperature-stable down-conversion white light-emitting diodes with a half-lifetime of 186 h

Fei Zhang, Xinzhen Ji, Wenqing Liang, Ying Li, Zhuangzhuang Ma, Meng Wang, Yue Wang, Di Wu, Xu Chen*, Dongwen Yang, Xinjian Li, Chongxin Shan and Zhifeng Shi*

Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

*Corresponding author. E-mail: shizf@zzu.edu.cn; xchen@zzu.edu.cn
Table S1 Comparison of synthesis methods, morphology, size and PLQY of Cs$_3$InBr$_6$ QDs and other In-based halide materials.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Method</th>
<th>Morphology</th>
<th>Size</th>
<th>PLQY</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs$_3$InBr$_6$</td>
<td>M-LARP</td>
<td>QDs</td>
<td>4.5 nm</td>
<td>46%</td>
<td>This work</td>
</tr>
<tr>
<td>Cs$_3$InBr$_6$</td>
<td>Hot-injection method</td>
<td>Hollow NCs</td>
<td>20.5 nm</td>
<td>22.3%</td>
<td>[1]</td>
</tr>
<tr>
<td>(C$_6$H$_5$CH$_2$NH$_3$)$_3$InBr$_6$</td>
<td>Hydrothermal method</td>
<td>Single crystal</td>
<td>~1 cm</td>
<td>35%</td>
<td>[2]</td>
</tr>
<tr>
<td>Cs$_2$InBr$_5$·H$_2$O</td>
<td>Hydrothermal method</td>
<td>Single crystal</td>
<td>~2 mm</td>
<td>33%</td>
<td>[3]</td>
</tr>
<tr>
<td>Cs$_2$InCl$_5$·H$_2$O</td>
<td>Low temperature crystallization</td>
<td>Single crystal</td>
<td>~6 mm</td>
<td>18%</td>
<td>[4]</td>
</tr>
<tr>
<td>Cs2InCl${2.5}$Br$_{2.5}$·H$_2$O</td>
<td>Hydrothermal method</td>
<td>Single crystal</td>
<td>-</td>
<td>24.4%</td>
<td>[5]</td>
</tr>
<tr>
<td>Cs$_2$InBr$_4$·H$_2$O</td>
<td>Hydrothermal method</td>
<td>Single crystal</td>
<td>-</td>
<td>1%</td>
<td>[5]</td>
</tr>
<tr>
<td>Rb$_2$InCl$_5$·(H$_2$O)</td>
<td>Hydrothermal method</td>
<td>Single crystal</td>
<td>-</td>
<td>~1%</td>
<td>[6]</td>
</tr>
<tr>
<td>Rb$_3$InCl$_6$</td>
<td>Sonication method</td>
<td>Powder</td>
<td>-</td>
<td>-</td>
<td>[7]</td>
</tr>
<tr>
<td>(C4H${14}$N$_2$)$_2$In2Br${10}$</td>
<td>Solution-phase method</td>
<td>Single crystal</td>
<td>-</td>
<td>~3%</td>
<td>[8]</td>
</tr>
</tbody>
</table>
Fig. S1 (a) PL spectra and (b) PLQYs of Cs$_3$InBr$_6$ QDs synthesized under different CsBr/InBr$_3$ ratios, respectively.
Fig. S2 PLQY data of the Cs$_3$InBr$_6$ QDs solution measured by integrating sphere.
Fig. S3 TEM images of the Cs$_3$InBr$_6$ QDs continuously exposed to electron beam.
Fig. S4 Total XPS spectrum of the Cs$_3$InBr$_6$ QDs.
Fig. S5 Integrated PL intensity of Cs$_3$InBr$_6$ QDs as a function of excitation power density.

We further analyzed the slope of the fitted curve of the excitation-power-dependent PL emission intensity to determine the recombination kinetics. The dependence of the PL intensity I on the excitation power L can be estimated by the equation $I \approx L^k$, where k is an exponent between 0 and 2.40.$^9,^{10}$ Generally, $k = 2$ indicates recombination between a free electron and a hole, $1 < k < 2$ corresponds to free or bound exciton decay, while $k < 1$ correlates with impurity-related emission. As shown in Fig. S5, the plot of log(I) vs log(L) is linear with a slope of 1.92 ± 0.04, indicating the exciton transition. The excitation intensity dependence of emission is consistent with the bound and free exciton emission. Considering the broadband emission feature of Cs$_3$InBr$_6$ QDs, the PL emission in Cs$_3$InBr$_6$ is essentially excitonic and results from the recombination of bound excitons and multiphonon emission.
Fig. S6 (a) Normalized PL spectra of Cs$_3$InBr$_6$ QDs monitored at different excitation wavelengths. (b) Normalized PL excitation spectra of Cs$_3$InBr$_6$ QDs monitored at different emission wavelengths.
Fig. S7 The bandgap of Cs$_3$InBr$_6$ QDs determined from a Tauc plot of absorption spectrum.
Fig. S8 The predicted density of states (PDOS) of Cs$_3$InBr$_6$ using PBE functional.
Fig. S9 XRD patterns of (a) Cs$_3$InCl$_6$, and (b) Cs$_3$InI$_6$ QDs, respectively.
Fig. S10 Size distribution histograms of (a) Cs$_3$InCl$_6$, and (b) Cs$_3$InI$_6$ QDs, respectively.
Fig. S11 PL spectra evolution of the Cs$_3$InBr$_6$ QDs under different UV light irradiation time.
Fig. S12 Stability test of the Cs$_3$InBr$_6$ QDs film under continuous 365 nm UV lamp irradiation and high humidity (20–30 °C, 70–80% humidity) environment. The insets show the luminescence photos of the Cs$_3$InBr$_6$ QDs film before and after treatment.
Fig. S13 XRD results of the Cs$_3$InBr$_6$ QDs film after storage in air ambient (20–35 °C, 50–60% humidity) for 60 days.
Fig. S14 Plots of the normalized PL intensity of Cs$_3$InBr$_6$ QDs at two typical temperature points (20 °C and 100 °C) over 15 heating/cooling cycles.
Fig. S15 The corresponding color temperature (CCT) of the WLED under different driving currents.
Fig. S16 Emission intensity evolution of the WLED measured at the driving current of (a) 100 mA, and (b) 200 mA, respectively.
References

