Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2021

Diindolocarbazole – Achieving Multiresonant Thermally Activated Delayed Fluorescence Without The Need for Acceptor Units

David Hall,^{a, b}* Kleitos Stavrou,^c Eimantas Duda,^d Andrew Danos,^c Sergey Bagnich,^d Stuart Warriner,^e Alexandra M. Z. Slawin,^a David Beljonne,^b Anna Köhler,^d* Andrew Monkman,^c* Yoann Olivier,^f* and Eli Zysman-Colman^a*

^aOrganic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews,

St Andrews, UK, KY16 9ST. E-mail: <u>eli.zysman-colman@st-andrews.ac.uk;</u>

http://www.zysman-colman.com

^bLaboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium.

^cDepartment of Physics, Durham University, Durham, UK, DH1 3LE. Email:

a.p.monkman@durham.ac.uk

^dSoft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30,

95447 Bayreuth, Germany. E-mail: anna.koehler@uni-bayreuth.de

^e School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK

^fLaboratory for Computational Modeling of Functional Materials & Solid State Physics

Laboratory, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles,

61, 5000 Namur, Belgium. E-mail: <u>yoann.olivier@unamur.be</u>

SUPPORTING INFORMATION

Table of Contents

Pages

General Methods	S2
Literature Study	S7
Experimental Section	S12
X-ray Crystallography	S33
Computational calculations	S35
Optoelectronic Characterization	S45
OLED Data	S55
References	S58

General methods

General Synthetic Procedures. All commercially available chemicals and reagent grade solvents were used as received. Solvents used in the reactions were dry and deaerated using an MBRAUN solvent purification system. Air-sensitive reactions are done under a nitrogen atmosphere using Schlenk techniques. Flash column chromatography was carried out using silica gel (Silia-P from Silicycle, 60 Å, 40-63 µm). Analytical thin-layer-chromatography (TLC) was performed with silica plates with aluminium backings (250 µm with F-254 indicator). TLC visualization was accomplished by use of a 254/365 nm UV lamp. HPLC analysis was conducted on a Shimadzu Prominence Modular HPLC system. HPLC traces were performed using an ACE Excel 2 C18 analytical column in THF and MeOH. ¹H and ¹³C and NMR spectra were recorded on a Bruker Advance spectrometer (500 MHz for ¹H and 125 MHz for ¹³C). The following abbreviations have been used for multiplicity assignments: "s" for singlet, "d" for doublet, "t" for triplet, "dd" for doublet of doublets, "ddd" for doublet of doublet of doublet and "m" for multiplet. Deuterated chloroform (CDCl₃) and deuterated DMSO (DMSO-d₆) was used as the solvents of record. ¹H and ¹³C NMR spectra were referenced to

the solvent peak. Melting points were measured using open-ended capillaries on an Electrothermal melting point apparatus and are uncorrected. High-resolution mass spectrometry (HRMS) was performed by the Mass spec service at St Andrews and Dr Stuart Warriner at the University of Leeds.

Thermal analysis. Thermogravimetric analysis (TGA) was conducted on a PerkinElmer Thermal analysis at the University of Durham with a heating rate of 10 °C/min under nitrogen flow. The samples were heated from 30 °C to 700 °C and the thermal decomposition (T_d) was determined at a 5% weight loss.

Electrochemistry measurements. Cyclic Voltammetry (CV) and Differential pulse voltammetry (DPV) analysis was performed on an Electrochemical Analyzer potentiostat model 620D from CH Instruments. Samples were prepared in dichloromethane (DCM) or dimethylformamide (DMF) solutions, which were degassed by sparging the relevant solvent with saturated nitrogen gas for 5 minutes prior to measurements. All measurements were performed using 0.1 M tetra-*n*-butylammonium hexafluorophosphate, [*n*Bu₄N]PF₆, in the relevant solvent. An Ag/Ag⁺ electrode was used as the reference electrode, a glassy carbon electrode was used as the working electrode and a platinum electrode was used as the counter electrode. The redox potentials are reported relative to a saturated calomel electrode (SCE) with a ferrocene/ferrocenium (Fc/Fc⁺) redox couple as the internal standard (0.46 V vs SCE for DCM, 0.45 V vs SCE for DMF).¹ The HOMO and LUMO energies were determined using the relation $E_{HOMO/LUMO} = -(E_{oxonset} / E_{redonset} + 4.8)$ eV, where $E_{oxonset}$ and $E_{redonset}$ are the onset of anodic and cathodic peak potentials, respectively calculated from DPV relative to Fc/Fc⁺.²

Photophysical measurements. Optically dilute solutions of concentrations on the order of 10⁻ ⁵ or 10⁻⁶ M were prepared in HPLC grade solvent for absorption and emission analysis. Absorption spectra were recorded at room temperature on a Shimadzu UV-2600 double beam spectrophotometer. Steady-state photoluminescence spectra in solution were recorded at 298 K using Shimadzu FS5 Spectro fluorophotometer and Jasco FP-8600 spectrofluorometer. A Jasco FP-8600 spectrofluorometer with an integrating sphere was employed for quantum yield measurements for thin film samples.³ Doped thin films were prepared by mixing the sample (1, 3, 5, 7, 10, 15, 20, 100 wt.%) and mCP in chloroform followed by spin-casting on a quartz substrate. The Φ_{PL} of the films were then measured in air and by purging the integrating sphere with N₂ gas flow. Time-resolved PL measurements of the thin films were carried out using an iCCD camera with integration times being ten times shorter than the delays times. The samples were excited at 355 nm by a q-switched laser from QS Lasers (MPL15100-DP). Emission from the samples was focused onto a spectrograph (Oriel MS257) and detected on a gated iCCD camera (iStar A-DH334T-18F-03). The measurements were recorded under vacuum or helium atmosphere unless otherwise stated. Phosphorescence spectra were obtained using a Jasco FP-8600 spectrofluorometer at 77 K, with a delay time of 70 ms for toluene and 20 ms for mCP. Time-resolved decays in other OLED hosts Time-resolved measurements were collected using a spectrograph and a Stanford Computer Optics 4Picos ICCD camera, where samples were excited with a Nd:YAG laser (EKSPLA), 10 Hz, 355 nm.

Quantum chemical calculations. The calculations were performed with the Gaussian 16 revision A03 suite for the density functional theory $(DFT)^4$ and with the Turbomole/7.4 package for SCS-CC2 calculations. We first optimized the ground state using Spin-component scaling coupled-cluster singles-and-doubles model (SCS-CC2)^{5, 6} method considering the cc-pVDZ⁷ basis set. Vertical excited states were performed on the ground state optimized structure

using SCS-CC2/cc-PVDZ level of theory and computing the two first singlet (S_1 and S_2^8) and two first triplet excited states ($T_1 - T_2^9$). Excited state optimized S_1 and T_1 states were performed at the DFT level using PBE0¹⁰ within the Tamm-Dancoff approximation (TDA)¹¹ with the 6-31G(d,p)¹² basis set. SCS-CC2/cc-PVDZ S_1 and T_1 excitation energies are obtained using the TDA-DFT optimized structures. Frequency calculations were implemented using the S_1 and T_1 optimized geometries of **DiCz-p-2** at the PBE0/6-31G(d,p) level of theory and using an undistorted displaced harmonic oscillator model to simulate the spectra. The 0-0 transitions was aligned to the value computed from Table **S6** (3.06 eV for S_1 ; 2.78 eV for T_1). Molecular orbitals were visualized using GaussView 6.0 software.¹³ Different density plots were used to visualize change in electronic density between the ground and excited state and were obtained using the VESTA package.¹⁴

OLED fabrication and testing. Organic light-emitting diodes (OLEDs) were fabricated on patterned indium-tin-oxide (ITO) coated glass (VisionTek Systems) with a sheet resistance of 15 Ω/cm^2 using vacuum thermal evaporation. The substrates were sonicated for 15 minutes each in acetone and then IPA. After oxygen-plasma cleaning, the substrates were loaded into a Kurt J. Lesker Super Spectros 200 deposition chamber. All organic and cathode layers were thermally evaporated at a pressure below 10^{-7} mbar, at evaporation rates in the range of 0.1-0.5 A/s and forming pixels of 2×2, 2×4, and 4×4mm. The materials used for the device fabrication were: N,N'-bis-(naphthalene-1-yl)-N,N'bis(phenyl)benzidine (NPB, Lumtec), 4,4-(diphenylsilanediyl)bis(N,N-diphenylaniline) (TSBPA, Lumtec), 3,3'-Di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP, Ossila), 1,3,5-tris(N-phenylbenzimidazol-2yl)benzene (TPBi, Lumtec), 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T, Ossila), bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO, Sigma Aldrich), lithium fluoride (LiF, Sigma Aldrich), 8-Quinolinolato lithium (Liq, Ossila) and aluminium (Al, Alfa Aesar) which were either purchased from the companies pre-sublimed or sublimation purified before use (Creaphys DSU05). Characterization of OLED devices was conducted in a 10-inch integrating sphere (Labsphere) coupled with a calibrated fibre spectrometer (Ocean Optics USB4000) and connected to a Keithley 2400 source measure unit.

Literature Study

Figure S1. Structures of discussed literature MR-TADF emitters.

Compound	Medium	λ_{PL}	$\mathbf{\Phi}_{\mathrm{PL}}$	τ_D /	ΔE_{ST}	$\lambda_{\rm EL}$	CIE _{XY}	EQE _{max}	EQE ₁₀₀	Roll-off	Ref
		/	/ %	μs	/ eV	/ nm		/ %	/ %	1000 cd	
		nm								m ⁻² / %	
DABNA-1	1 wt% mCBP	460	88	94	0.18	459	0.13,0.09	13.5	~6.3	N/A	15
DABNA-2	1 wt% mCBP	469	90	65	0.14	467	0.12,0.13	20.2	~13.3	N/A	15
v-DABNA	1 wt% in	467	90	4.1	0.02	469	0.12,0.11	34.4	32.7	26.1	16
	DOBNA-OAr										
DtBuCzB	1 wt% mCBP	493	88	69	0.13ª	488	0.10,0.42	21.6	15.0	5.3	17, 18
2F-BN	6 wt% mCBP	502	89	25.6	0.16ª	501	0.16,0.60	22.0	20.1	15.0	19
3F-BN	6 wt% mCBP	503	83	16.7	0.08 ^a	499	0.20,0.58	22.7	22.3	21.1	19
4F-BN	6 wt% mCBP	501	91	19.0	0.11ª	493	0.12,0.48	20.9	19.2	16.4	19
BBCz-G	2 wt% mCBP	519	99	13	0.14 ^a	515	0.26,0.68	31.8	~29.5	~22.3	18
BBCz-R	2 wt% mCBP	619	79	53	0.19ª	616	0.67,0.33	22.0	~5	N/A	18
R-BN	3 wt% CBP	672	100	310	0.18 ^a	664	0.72,0.28	28.4	N/A	N/A	20
R-TBN	3 wt% CBP	698	100	710	0.16ª	686	0.72,0.28	28.1	N/A	N/A	20
ADBNA-	1 wt% in	482	89	165	0.18	480	0.10,0.27	16.2	11.2	N/A	21, 22
Me-Mes	DOBNA-OAr										
ADBNA-	1 wt% in	479	88	147	0.18	481	0.11,0.29	21.4	15.4	N/A	21
Me-Tip	DOBNA-OAr										
QAO/QAD/	5 wt% mCP	466	72	93.3	0.19	468	0.13,0.18	19.4	~9.4	~1.4	23
DiKTa											
Mes ₃ DiKTa	3.5 wt% mCP	477	80	20	0.21	480	0.12,0.32	21.1	14.5	4.5	24
ЗМТРТОА	15 wt% mCP	502	92	N/A	0.14	516	0.21,0.62	31.2	N/A	N/A	25
Т											

Table S1. Optoelectronic and device properties of high performing MR-TADF emitters

^aIn dilute toluene solution, where \sim indicates data were extracted using graphical fitting software

(https://apps.automeris.io/wpd).

Emitter	Medium	$\Phi_{\rm p}$	τ_p / ns	$\Phi_{\rm d}$	$\tau_d / \mu s$	$\Delta E_{ m ST}$ /	$k_{\rm ISC}$ / ×	$k_{ m RISC}$ / $ imes$	Ref
						eV	10 ⁷ s ⁻¹	10 ² s ⁻¹	
MCz-TXT	10 wt% mCBP	N/A	N/A	N/A	0.75	0.04	94	1100000	26
5Cz-TRZ	Toluene	N/A	5.7	N/A	1.9	0.06	32	150000	27
TpAT-tFFO	Toluene	2	15	82	4.4	0.02	5.3	120000	28
BSBS-N1	2 wt% mCBP	8	0.9	81	5.6	0.14	100	19000	29
m-Cz-BNCz	10 wt% PhCzBCz	85	8.8	11	0.86	0.08	1.3	10800	30
v-DABNA	1 wt% DOBNA-	82	4.1	8	4.1	0.02	2.3	2000	16
	OAr								
BBCz-G	Toluene	29	5.0	61	17	0.14	14	1800	18
ADBNA-	1 wt% DOBNA-	66	6.0	21	147	0.18	4.1	900	21
Me-Tip	OAr								
DiKTa	Toluene	25	5.1	1	23	0.19	0.75	460	24
4F-BN	6 wt% mCPBC				19	0.11	1.6	440	19
3F-BN	6 wt% mCPBC	N/A	N/A	N/A	17	0.08	2.0	390	19
Mes3DiKTa	Toluene	36	6.7	1	33	0.21	0.40	310	24
2F-BN	6 wt% mCPBC	N/A	N/A	N/A	26	0.16	1.5	220	19
DABNA-2	1 wt% mCBP	84	6.0	5	65	0.14	1.1	150	15
BBCz-SB	Toluene	65	4.7	33	102	0.13	7.4	140	18
BBCz-R	Toluene	65	6.1	24	89	0.19	5.7	120	18
DABNA-1	1 wt% mCBP	85	8.8	4	94	0.18	0.45	99	15
ADBNA-	1 wt% DOBNA-	71	6.9	18	165	0.18	2.9	76	31
Me-Mes	Oar								
R-BN	3 wt% CBP	82	4.7	18	310	0.18	3.9	39	20
R-TBN	3 wt% CBP	73	10.3	27	710	0.16	2.6	19	20
DiICzMes4	3 wt% mCP	82	12	0.00(1	438	0.26	1.5	1.8	This
)					work

Table **S2**. TADF properties of literature MR-TADF emitters.

Highest k_{RISC} D-A TADF - x 10^{7 - 8} s⁻¹

Figure S2. Structures of highest k_{RISC} D-A and MR-TADF emitters reported.

Figure S3. Structures of MR-TADF DiIndolocarbazole emitters.

	Emitter	Von	EQE _{max}	EQE ₁₀₀	EQE1000	Lum _{max /}	CIE (x,y)	λ _{EL} /	Ref
		/ V	/ %	/ %	/ %	cd/m ⁻²			
Emitter only	DiICzMes ₄	5.2	3.0	1.9	N/A	130	0.15, 0.11	446	This work
	BisICz	3.4ª	6.5	2.5ª	N/A	130 ^a	0.16, 0.04	437	32
	tBisICz	3.2ª	15.1	3.0ª	N/A	200ª	0.16, 0.05	445	32
	tPBisICz	3.2	23.1	4.8ª	N/A	230 ^a	0.15, 0.05	452	32

Table **S3**. Summary of conventional OLEDs with DiIndolocarbazole MR-TADF emitters.

^a Data extracted from graphical fitting software,

Experimental section

9-(2-bromophenyl)-9H-carbazole - 1

Carbazole (6.69 g, 40.0 mmol, 1.4 equiv.) and oven dried cesium carbonate (13.0 g, 40.0 mmol, 1.4 equiv.) were dried under vacuum for 30 minutes. Dry DMF (80 mL) was added, and the resulting mixture was stirred under N₂ for 30 minutes. 1-bromo-2-fluorobenzene (3.12 mL, 28.6 mmol, 1 equiv.) was added and the resulting mixture was heated to 150 °C for 48 hrs. The reaction was cooled, and water (200 mL) was added. The product was extracted with DCM (3 × 100 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude product as a off white solid. The crude product was purified by column chromatography on silica gel (5% - 10% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford a white solid. **Yield:** 96% (8.8 g). **Rf**: 0.37 (10% DCM:Hexanes on silica gel). **Mp**: 92 – 95 °C (Lit Mp: 95 – 96 °C).³³ ¹**HNMR (500 MHz, CDCI3) δ (ppm)**: 8.16 (d, *J* = 7.8 Hz, 2H), 7.87 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.53 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.49 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.38 – 7.45 (m, 3H), 7.28 – 7.32 (m, 2H), 7.07 (d, *J* = 8.2 Hz, 2H). ¹³**C NMR (126 MHz, CDCI₃) δ (ppm)**: 141.0, 136.9, 134.4, 131.3, 130.3, 129.0, 126.1, 124.0, 123.4, 120.5, 120.1, 110.2. The characterization matches that previously reported.³⁴

Figure S4. ¹H NMR of 1 in CDCl₃.

Figure **S5**. ¹³C NMR of **1** in CDCl₃.

Indolo[3,2,1-jk]-carbazole - ICz

1 (4.00 g, 12.4 mmol, 1 equiv.), K₂CO₃ (8.58 g, 62.1 mmol, 5 equiv.) and tetrabutylammonium bromide (4.00 g, 12.4 mmol, 1 equiv.) were dissolved in *N*,*N*-Dimethylacetamide (100 mL), the reaction mixture was degassed by bubbling N₂ through for 15 min. Pd(OAc)₂ (0.42 g, 1.9 mmol, 0.15 equiv.) and PPh₃ (1.14 g, 4.3 mmol, 0.35 equiv.) were added and the resulting mixture was heated to 160 °C for 48 hours. The reaction mixture was cooled, and water (200 mL) was added, and the product was extracted with DCM (3 × 100 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude product as a grey solid. The product was purified by column chromatography on silica gel (10% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford the solid, which was washed with cold pentane to produce white needle crystals. **Yield:** 85% (2.55 g). **Rf**: 0.26 (10% DCM:Hexanes on silica gel). **Mp**: 129 - 133 °C (lit Mp: 126 - 128 °C).³⁴ ¹**HNMR (500 MHz, CDCl₃) \delta (ppm)**: 8.16 (d, *J* = 8.0 Hz, 2H), 8.06 (d, *J* = 7.5 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.57 (td, *J* = 0.9, 7.7 Hz, 2H), 7.37 (td, *J* = 0.9, 7.7 Hz, 2H). ¹³C **NMR (126 MHz, CDCl₃) \delta (ppm)**: 143.9, 138.9, 130.2, 126.9, 123.3, 123.0, 121.9, 119.6, 118.6, 112.3. 97.6% pure on HPLC analysis, retention time 2.5 minutes in 99% MeOH 1% THF mix. The characterization matches that previously reported.³⁴

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

Figure **S6**. ¹H NMR of **ICz** in CDCl₃.

Figure S7. ¹³C NMR of ICz in CDCl₃.

HPLC Trace Report13Apr2021

<Sample Information>

Sample Name	; icz		
Sample ID	:		
Method Filename	: 99% Methanol 1% THF 20 m	nins 0.6.lcm	
Batch Filename	: dh-dii-col-p-31032021.lcb		
Vial #	: 1-28	Sample Type	: Unknown
Injection Volume	: 3 uL		
Date Acquired	: 13/04/2021 16:43:36	Acquired by	: System Administrator
Date Processed	: 13/04/2021 17:03:38	Processed by	: System Administrator

<Peak Table>
Detector A 254nm

		01 A 204000					
F	Peak#	Ret. Time	Area	Height	Area%	Area/Height	Width at 5% Height
Г	1	1.698	44149	3446	1.434	12.810	
Γ	2	2.054	22579	1541	0.733	14.654	
Γ	3	2.533	3006565	448294	97.634	6.707	0.198
Γ	4	3.620	6126	779	0.199	7.866	0.244
Γ	Total		3079419	454060	100.000		

Figure S8. HPLC trace of ICz.

2,5,11-tribromoindolo[3,2,1-jk]carbazole - ICzBr₃

ICz (1.50 g, 6.2 mmol, 1 equiv.) was added to dry DMF (30 mL). *N*-Bromosuccinimide (3.65 g, 20.5 mmol, 3.3 equiv.) was added in portions and the resulting mixture was stirred at room temperature in darkness for 24 hours. Saturated sodium thiosulfate (50 mL) was added, and the resulting reaction mixture was extracted with DCM (5×100 mL) and concentrated under reduced pressure. The reaction

mixture was sonicated in EtOAc (100 mL), filtered and dried to afford the compound as a white solid. **Yield:** 79% (2.35 g). **Mp**: 297 - 301 °C. ¹**HNMR (500 MHz, DMSO-d₆) δ (ppm)**: 8.57 (d, *J* = 2.0 Hz, 2H), 8.49 (s, 2H), 8.29 (d, *J* = 8.6 Hz, 2H), 7.81 (dd, *J* = 8.6, 2.0 Hz, 2H). ¹³C **NMR (126 MHz, DMSO-d₆) δ (ppm)**: 141.9, 137.1, 130.5, 130.2, 126.8, 124.1, 118.5, 115.7, 114.9. The characterization matches that previously reported.³⁵

Figure S9. ¹H NMR of ICzBr₃ in DMSO-d₆.

Figure S10. ¹³C NMR of ICzBr₃ in DMSO-d₆.

2,5,11-trimesitylindolo[3,2,1-jk]carbazole - ICzMes₃

Cesium carbonate (2.39 g, 7.32 mmol, 7 equiv.), $ICzBr_3$ (0.50 g, 1.05 mmol, 1 equiv.) and mesitylboronic acid (1.03 g, 6.28 mmol, 6 equiv.) were added to a mixture of toluene (3.75 mL), water (2.50 mL) and ethanol (2.50 mL). The resulting solution was degassed with N₂ bubbling for 30 min.

Pd(PPh₃)₄ (0.04 g, 0.04 mmol, 0.03 equiv.) was added and the resulting solution was heated to 100 °C for 24 h. The reaction mixture was cooled, and the product was extracted with EtOAc (3×50 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford crude product as a black solid. The product was purified by column chromatography on silica gel (5% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford a white solid. **Yield:** 69% (0.43 g). **Rf**: 0.23 (5% DCM:Hexanes on silica gel). **Mp**: 252 - 255 °C. ¹**HNMR (500 MHz, CDCl₃) δ (ppm)**: 8.01 (d, *J* = 8.2 Hz, 2H), 7.88 (d, *J* = 1.3 Hz, 2H), 7.77 (s, 2H), 7.36 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.01 (s, 6H), 2.37 (s, 9H), 2.10 (s, 12H), 2.06 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ (ppm): 139.1, 137.8, 136.8, 136.7, 136.5, 134.7, 130.3, 128.1(3), 128.0(7), 128.0(6), 124.0, 120.6, 118.6, 112.1, 21.2, 21.1, 21.0. **HR-MS [M+H]**⁺ Calculated: (C₄₅H₄₁NH) 596.3312; Found: 596.3302. 99.7% pure on HPLC analysis, retention time 10.1 minutes in 99% MeOH 1% THF mix.

Figure S11. ¹H NMR of ICzMes₃ in CDCl₃.

Figure S12. ¹³C NMR of ICzMes₃ in CDCl₃.

Figure S13. HRMS of ICzBr₃.

HPLC Trace Report27Jan2021

<Sample Information>

-			
Sample Name	: icz-mes3		
Sample ID	:		
Method Filename	: 99% Methanol 1% THF 20 mins.lcm		
Batch Filename	: icz-mes3-post-sub-27012021-thf.lcb		
Vial #	: 2-2	Sample Type	: Unknown
Injection Volume	: 5 uL		
Date Acquired	: 27/01/2021 17:59:44	Acquired by	: System Administrator
Date Processed	: 27/01/2021 18:19:45	Processed by	: System Administrator

<Chromatogram>

Peak#	Ret. Time	Area	Height	Area%	Area/Height	Width at 5% Height
1	1.208	1368	257	0.010	5.328	
2	4.652	15777	1438	0.112	10.970	
3	4.958	13145	1183	0.093	11.112	
4	5.797	2879	143	0.020	20.134	0.608
5	7.872	1613	117	0.011	13.780	0.383
6	8.622	1121	75	0.008	14.910	0.402
7	10.132	14030797	665746	99.745	21.075	0.721
Total		14066700	668960	100.000		

Figure S14. HPLC trace report of ICzMes₃.

3,6-dimesityl-9H-carbazole - Mes₂Cz

The reaction is based on a previously reported synthesis.³⁶

Cesium carbonate (35.1 g, 108 mmol, 7 equiv.), 3,6-dibromo-9H-carbazole (5.00 g, 15.4 mmol, 1 equiv.) and mesitylboronic acid (10.1 g, 61.5 mmol, 4 equiv.) were added to a mixture of toluene (56.3 mL), water (37.5 mL) and ethanol (37.5 mL). The resulting solution was degassed with N₂ bubbling for 30 min. Pd(PPh₃)₄, (0.53 g, 0.46 mmol, 0.03 equiv.) was added and the resulting solution was heated to

100 °C for 24 hours. The reaction was cooled and extracted with EtOAc (3 × 100 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give an orange oil. The product was purified by column chromatography on silica gel (30% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford a white solid. The product was recrystalised by slow evaporation from tetrahydrofuran to afford a white crystalline solid. **Yield:** 62% (3.86 g). **R***f*: 0.35 (30% DCM:Hexanes on silica gel). **Mp**: 147 - 151 °C. ¹**HNMR (500 MHz, CDCl3) \delta (ppm)**: 8.14 (s, 1H), 7.78 (d, *J* = 1.3 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.19 (dd, *J* = 8.22, 1.4 Hz, 2H), 6.98 (s, 4H), 2.36 (s, 6H), 2.06 (s, 12H). ¹³**C NMR (126 MHz, CDCl₃) \delta (ppm)**: 139.8, 138.7, 136.8, 136.5, 132.4, 128.2, 127.5, 123.6, 120.9, 110.7, 21.2(0), 21.1(7). Spectra in agreement with previously reported.³⁶

Figure S15. ¹H NMR of Mes₂Cz in CDCl₃.

Figure S16. ¹³C NMR of Mes₂Cz in CDCl₃.

9,9'-(2,5-dibromo-1,4-phenylene)bis(3,6-dimesityl-9H-carbazole) - 2

NaH (60% dispersed in mineral oil, 0.04 g, 1.6 mmol, 2.5 equiv.) was added to dry DMF (12 mL). It was stirred under N₂ and cooled to 0 °C, Mes_2Cz (0.65 g, 1.6 mmol, 2.5 equiv.) was added in portions and stirred for 30 min. 1,4-dibromo, 2,5-difluorobenzene (0.18 g, 0.64 mmol, 1 equiv.) was added and

the resulting mixture was stirred and heated to 50 °C for 48 h under a N₂ atmosphere. The reaction mixture was cooled and water (30 mL) was added. The product was extracted with DCM (3 × 50 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the product as an off-white solid. The product was purified by column chromatography on silica gel (10% - 20% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford a white solid. The product was recrystalized in a toluene methanol mix (1:1) to afford a white powder. **Yield:** 75% (0.50 g). **R***f*: 0.32 (15% DCM:Hexanes on silica gel). **Mp**: 279 - 283 °C. ¹**HNMR** (**500 MHz, CDCl₃) \delta (ppm)**: 8.15 (s, 2H), 7.88 (d, *J* = 1.1 Hz, 4H), 7.34 (d, *J* = 8.3 Hz, 4 H), 7.28 (d, *J* = 1.1 Hz, 4H), 7.01 (s, 8H), 2.37 (s, 12H), 2.11 (s, 12H), 2.10 (s, 12H). ¹³**C NMR (126 MHz, CDCl₃)** δ (**ppm**): 139.8, 139.5, 138.6, 136.9, 136.8, 136.1, 133.7, 128.3, 128.0, 123.9, 123.2, 121.2, 110.3, 21.3, 21.2. **HR-MS [M+H]**⁺ Calculated: (C₆₆H₅₈N₂Br₂H) 1039.3029; Found: 1039.2990.

Figure **S17**. ¹H NMR of **2** in CDCl₃.

Figure S18. ¹³C NMR of 2 in CDCl₃.

Figure S19. HRMS of 2.

DiICzMes₄

2 (0.40 g, 0.4 mmol, 1 equiv.), tetra-butyl-ammonium bromide (0.25 g, 0.8 mmol, 2 equiv.), K₂CO₃ (0.53 g, 3.8 mmol, 10 equiv.) were dissolved in N,N-Dimethylacetamide (4 mL), the reaction was degassed by bubbling N₂ through the solution for 15 min. Pd(OAc)₂ (0.04 g, 0.02 mmol, 0.5 equiv.) and PPh3 (0.10 g, 0.4 mmol, 1 equiv.) were added and the mixture was heated to 160 °C for 48 h. The reaction was cooled, water (20 mL) was added and the product was extracted with DCM (4 × 50 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the crude product as a black solid. The product was purified by column chromatography on silica gel (5% - 10% DCM:Hexanes). The corresponding fractions were combined and concentrated under reduced pressure to afford a yellow solid. The product was subsequently sonicated in methanol and filtered producing a yellow solid, 0.27 g (80%), which was recrystalized in a toluene methanol mixture (1:1) and filtered to afford pale yellow crystals. Yield: 59% (0.20 g). Rf: 0.27 (10% DCM: Hexanes on silica gel). Decomposed: 392 °C. ¹HNMR (500 MHz, CDCl₃) δ (ppm): 8.67 (s, 2H), 8.15 (d, J = 8.2 Hz, 2H), 8.00 (s, 2H), 7.92 (d, J = 1.3 Hz, 2H), 7.83 (s, 2H), 7.42 (dd, J = 8.2, 1.3 Hz, 2H), 7.06 (s, 4H), 7.02 (s, 4H), 2.42 (s, 6H), 2.38 (s, 6H), 2.12 (s, 24H). ¹³C NMR (126 MHz, CDCl₃) δ (ppm): 144.3, 140.4, 139.2, 138.0, 137.0, 136.9, 136.8, 136.7, 136.3, 135.3, 134.7, 130.2, 129.6, 128.3(2), 128.2(8), 128.2(6), 124.1, 120.9, 120.5, 119.0, 118.8, 112.2, 106.8, 21.4, 21.3, 21.2, 21.1. HR-MS [M]⁺

Calculated: (C₆₆H₅₆N₂) 876.4443; Found: 876.4418. 99.2% pure on HPLC analysis, retention time 9.1

minutes in 85% MeOH 15% THF mix.

Figure S20. ¹H NMR of DiICzMes₄ in CDCl₃.

Figure S21. ¹³C NMR of DiICzMes₄ in CDCl₃.

Figure S22. HRMS of DiICzMes₄.

HPLC Trace Report04Apr2021

<Sample Information>

Sample Name Sample ID Method Filename	: diicz-col-1s rc : : 85% Methanol 15% THF 20 mins.lcn	n	
Batch Filename	: 02042021.lcb	Sample Type	Linknown
Injection Volume	: 8 uL	Sample Type	. UTIKHUWH
Date Acquired	: 02/04/2021 18:23:21	Acquired by	: System Administrator
Date Processed	: 02/04/2021 18:43:22	Processed by	: System Administrator

<Chromatogram>

Detector A 254nm

Dullu						
Peak#	Ret. Time	Area	Height	Area%	Area/Height	Width at 5% Height
1	5.771	1335	120	0.835	11.087	0.312
2	9.069	158509	7981	99.165	19.860	0.660
Total		159844	8102	100.000		

Figure S23. HPLC trace report for DiICzMes₄.

Figure S24. TGA of(a) ICzMes₃ and (b) DiICzMes₄.

X-ray Crystallography

ICzMes₃

DilCzMes₄

Figure S25. Packing regimes of ICzMes₃ and DiICzMes₄.

Single-crystal X-ray diffraction data were collected with a Rigaku MM007 HF and Pilatus detector d with Cu-K α radiation. The structures were solved by direct methods and refined on F^2 by using SHELXL. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> or from the Cambridge Crystallographic Data centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax (+44) 1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>. CCDC Nos 2104486 and 2104487

Table S4.	Selected	crystalle	ographic	data.
		~	<u> </u>	

	ICzMes ₃	DilCzMes4
Empirical formula	C45H41N	C75H67N2O
Formula Weight	595.83	1012.37
Crystal color, Habit	Colourless, prism	Yellow, prism
Crystal Dimensions / mm ³	$0.13 \times 0.02 \times 0.02$	$0.20\times0.05\times0.05$
Crystal System	Monoclinic	Triclinic
Lattice type	Primitive	Primitive
a / Å	8.24799(12)	13.33760(16)
b / Å	14.19010(18)	15.89840(19)
c / Å	28.3417(4)	16.118(2)
α/°		86.2207(10)
β / °	90.5962(13)	87.3777(10)
Γ/°		69.0861(11)
$V / Å^3$	3316.93(8)	3302.08(7)
Space Group	$P2_1/n(#14)$	P-1 (#2)
Z value	4	2
D _{calc} / g cm ⁻³	1.193	1.018
F000	1272.00	1078.00
μ(CuKα) / cm ⁻¹	5.122	4.507

Diffractometer	XtaLAB P100	XtaLAB P200
Radiation	CuK α (λ = 1.54184 Å) multi-layered	CuK α (λ = 1.54184 Å) multi-layered
	mirror monochromated	mirror monochromated
Temperature / °C	-100.00	-148.0
Detector Aperture / mm	83.8 × 33.5	83.8×70.0
Data Images	3982 exposures	
Pixel Size / mm	0.172	
$2\theta_{max}$ / °	136.6	151.0
No. of reflections measured	Total: 34062	Total: 37140
	Unique: 5985 ($R_{int} = 0.0389$)	Unique: 12877 ($R_{int} = 0.0122$)
Corrections	Lorentz-polarization	Lorentz-polarization
	Absorption	Absorption
	(trans. Factors:0.641-0.990)	(trans. Factors:0.766-0.978)
		Secondary Extinction
		(coefficient: 2.79100e-002
Structure Solution	Direct Methods (SHELXT version 2018/2)	Direct Methods (SHELXT version 2018/2)
Refinement	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least squares weights	$w = 1/[\sigma^2(Fo^2) + (0.0682 \cdot P)^2 +$	$w = 1/[\sigma^2(Fo^2) + (0.2000 \cdot P)^2 +$
	1.1538 · P]	0.0000 · P]
	Where $P = (Max(Fo^2, 0) + 2Fc^2)/3$	Where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
$2\theta_{cutoff}$ / °	136.6	151.0
Anomalous Dispersion	All non-hydrogen atoms	All non-hydrogen atoms
No. Observations (All reflections)	5985	12877
No. Variables	424	728
Reflection/Parameter ratio	14.12	17.69
Residuals: R1(I>2.00o(I))	0.0424	0.1510
Residuals: R (All reflections)	0.0463	0.1545
Residuals: wR2 (All reflections)	0.1187	0.5275
Goodness of Fit indicator	0.996	2.941
Max Shift/Error in Final cycle	0.000	0.170
Maximum peak in Final Diff. Map	0.24e ⁻ / Å ³	1.66e ⁻ / Å ³
Minimum peak in Final Diff. Map	-0.24e ⁻ / Å ³	-0.84e ⁻ / Å ³

Computations

Figure **S26.** Structures of modelled compounds.

Table **S5**. HOMO and LUMO energies of the investigated compounds at PBE0/6-31G(d,p) level, in the gas phase.

Compound	HOMO / eV	LUMO / eV	$\Delta E / \mathrm{eV}$
ICz	-5.84	-1.19	4.65
DiICz-m-1	-5.63	-1.31	4.32
DiICz-m-2	-5.68	-1.35	4.33
DiICz-p-1	-5.53	-1.51	4.02
DiICz-p-2	-5.50	-1.55	3.95
ICzMes ₃	-5.78	-1.28	4.50
DiICzMes ₄	-5.48	-1.62	3.86
tBisICz	-5.29	-1.44	3.85
DABNA-1	-4.99	-1.01	3.98
BCzBN	-5.30	-1.70	3.60
DiKTa	-6.20	-2.23	3.97

Figure S27. HOMO and LUMO electron density distributions of each modelled material, calculated at the PBE0/6-31G(d,p) level, isovalue = 0.02.

Compound	S ₁ (<i>f</i>) / eV	S ₂ (f) / eV	T ₁ / eV	T ₂ / eV	$\Delta E_{\rm ST}$ / eV
ICz	3.78 (0.10)	4.34 (0.09)	3.45	3.63	0.33
DiICz-m-1	3.58 (0.18)	3.91 (0.04)	3.29	3.42	0.30
DiICz-m-2	3.57 (0.12)	3.86 (0.34)	3.26	3.42	0.32
DiICz-p-1	3.36 (0.01)	3.75 (0.65)	3.19	3.22	0.17
DiICz-p-2	3.31 (0.15)	3.95 (0.52)	3.17	3.18	0.15

Table **S6**. Calculated vertical excited energies of proposed structures from the ground state geometry at SCS-CC2/cc-pVDZ

f is oscillator strength

Figure **S28**. Difference density plots of the proposed targets computed at the SCS-CC2/cc-pVDZ level of theory from vertical excitation from the ground state.

Compound	S ₁ (<i>f</i>) / eV	S ₂ (<i>f</i>) / eV	T ₁ / eV	T ₂ / eV	$\Delta E_{\rm ST}$ / eV
ICz	3.78 (0.10)	4.34 (0.09)	3.45	3.63	0.33
ICzMes ₃	3.64 (0.14)	4.19 (0.13)	3.42	3.50	0.21
DiICzMes4	3.21 (0.21)	3.83 (0.66)	3.08	3.14	0.13
tBisICz	3.21 (0.18)	3.87 (0.55)	3.07	3.16	0.14
DABNA-1	3.26 (0.31)	4.20 (0.04)	3.10	3.85	0.16
BCzBN	2.96 (0.54)	3.63 (0.02)	2.87	3.26	0.09
DiKTa	3.45 (0.20)	3.92 (0.00)	3.18	3.60	0.27

Table **S7**. Calculated vertical excited energies of emitters and MR-TADF emitters previously reported in the literature at SCS-CC2/cc-pVDZ level of theory from vertical excitation from the ground state.

f is oscillator strength

Figure **S29**. Difference density plots of our emitters calculated at the SCS-CC2/cc-pVDZ level of theory from vertical excitation from the ground state.

Figure **S30**. Difference density plots of literature emitters calculated at the SCS-CC2/cc-pVDZ level of theory from vertical excitation from the ground state.

Table **S8**. SCS-CC2/cc-pVDZ calculated S_1 and T_1 energies of the target emitters and previously reported MR-TADF emitters from TDA/PBE0 6-31G(d,p) optimized excited states.

Compound	$S_1(f) / eV^a$	T_1 / eV^b	$\Delta E_{\rm ST}$ / eV
ICz	3.59 (0.04)	2.99	0.59
ICzMes ₃	3.42 (0.07)	2.97	0.45
DiICzMes4	3.06 (0.11)	2.78	0.29
tBisICz	3.07 (0.09)	2.77	0.30
DABNA-1	3.14 (0.24)	3.02	0.12
BCzBN	2.90 (0.49)	2.81	0.09
DiKTa	3.31 (0.17)	3.04	0.26

^aFrom S₁ TDA/PBE0, 6-31G(d,p) optimized geometry, ^bFrom T₁

TDA/PBE0 6-31G(,d,p) optimized geometry, *f* is oscillator strength.

Compound	$S_1(f) / eV^a$	S_1 (f)/ eV^b	λ_{S1} / eV^c	T_1 / eV^d	T_1 / eV^e	λ_{T1} / eV^f
ICz	3.78 (0.10)	3.59 (0.04)	0.19	3.45	2.99	0.46
ICzMes ₃	3.64 (0.14)	3.42 (0.07)	0.22	3.42	2.97	0.45
DiICzMes4	3.21 (0.21)	3.06 (0.11)	0.15	3.08	2.78	0.30
tBisICz	3.21 (0.18)	3.07 (0.09)	0.14	3.07	2.77	0.30
DABNA-1	3.26 (0.31)	3.14 (0.24)	0.12	3.10	3.02	0.08
BCzBN	2.96 (0.54)	2.90 (0.49)	0.06	2.87	2.81	0.06
DiKTa	3.45 (0.20)	3.31 (0.17)	0.14	3.18	3.04	0.14

Table **S9**. Changes in S₁ and T₁ energies between Ground state and optimized excited geometries

^aFrom S₁ SCS-CC2/cc-pVDZ optimized geometry, ^bFrom TDA/PBE0, 6-31G(d,p) optimized geometry, ^cFrom a - b, ^dFrom S₁ SCS-CC2/cc-pVDZ optimized geometry, ^eFrom TDA/PBE0, 6-31G(d,p) optimized geometry, ^fFrom d - e, , *f* is oscillator strength.

	Ground state geometry ^a			Optimized excited state geometry ^b		
Compound	CT ^c	D_CT ^d	Overlap ^e	CT°	D_CT ^d	Overlap ^e
ICz S ₁	0.489	1.251	0.935	0.596	2.073	0.719
ICz T ₁	0.279	0.350	0.984	0.284	0.407	0.976
ICzMes ₃ S ₁	0.503	1.266	0.937	0.600	2.126	0.705
ICzMes ₃ T ₁	0.283	0.295	0.987	0.341	0.745	0.962
DiICzMes ₄ S ₁	0.522	0.001	0.956	0.557	0.002	0.921
DiICzMes ₄ T ₁	0.539	0.000	0.970	0.463	0.000	0.862

Table S10. Density data calculated from vertical excitation at SCS-CC2/cc-pVDZ.

^aCaclulated from ground state optimized geometry, SCS-CC2/cc-pVDZ, ^bCalculated from the excited state optimized geometry, PBE0/6-31G(d,p), ^cCharge transfer between area of increased and decreased density, ^dDistance of charge transferred between area of increased and decreased density, ^eOverlap between areas of increased and decreased density.

Compound	$\Delta E_{\rm ST}$ -Vert / eV ^a	$\Delta E_{\rm ST}$ -Ad / eV ^b	$\Delta \Delta E_{\rm ST}$ / eV ^c	$\Delta E_{\rm ST}$ -Exp / eV ^d
ICz	0.33	0.59	0.26	0.47
ICzMes ₃	0.21	0.45	0.24	0.39
DiICzMes ₄	0.13	0.29	0.16	0.26
tBisICz	0.14	0.30	0.16	0.29 ^e
DABNA-1	0.16	0.12	-0.04	0.15 ^f
BCzBN	0.09	0.09	0.00	0.12
DiKTa	0.27	0.26	-0.01	0.18

Table S11. Calculated and experimental ΔE_{ST} values of the emitters and literature cores.

^aComputed at the SCS-CC2/cc-pVDZ level of theory from vertical excitation of the ground state geometry SCS-CC2, ^bComputed from vertical exaction of the S₁ and T₁ optimized excited state geometries, ^cDifference between ΔE_{ST} computed in a and b, ^dFrom onset of fluoresence and phosphorescence in dilute toluene at 77 K, ^cObtained in 1 wt% mCP:TSPO1 film, ^fObtained in EtOH.

Figure S31. Structures, excited state energies and difference density plots of each S_1 and T_1 for ICz (left panel), ICzMes₃ (central panel) and DiICzMes₄ (right panel) from the ground state optimized geometries.

Figure **S32**. Difference density plots of literature emitters for S_1 and T_1 excited states computed at the SCS-CC2/cc-pVDZ level of theory based on excited states optimization carried out at the TDA/PBE0/6-31G(d,p) level of theory.

Optoelectronic data

In detail, the contribution of PF and DF to the total experimentally measured quantum yield were determined by³⁷

$$PF = \frac{A_{PF} \times \tau_{PF}}{(A_{PF} \times \tau_{PF}) + (A_{DF} \times \tau_{DF})} \quad (1) \qquad DF = \frac{A_{DF} \times \tau_{DF}}{(A_{DF} \times \tau_{DF}) + (A_{PF} \times \tau_{PF})} \quad (2)$$

Rate constants were calculated according to methods described by.³⁸

Where k_p and k_d are the prompt and delayed fluorescent rates, and k_{ISC} and k_{RISC} are the intersystem and reverse intersystem crossing rates calculated by:

$$k_{p} = 1 \div \tau_{p} (4) \qquad k_{d} = 1 \div \tau_{d} (5)$$
$$k_{ISC} = k_{p} \times (1 - \Phi_{p}) (6)$$
$$k_{RISC} = \frac{k_{p} \times k_{d}}{k_{ISC}} \left(\frac{\phi_{d}}{\phi_{p}}\right) (7)$$

Compound	E ^{ox a} /V	E ^{red b} /V	HOMO °/ eV	LUMO ^c /eV	$\Delta E_{H-L}^{d} / eV$
ICz	1.45	-2.21	-5.79	-2.14	3.61
ICzMes ₃	1.43	-2.16	-5.77	-2.19	3.58
DiICzMes ₄	1.11	-1.92	-5.45	-2.43	3.02

Table S12. Electrochemical data of each emitter

^aReported versus SCE in degassed DCM with 0.1 M [*n*Bu₄N]PF₆ as the supporting electrolyte and Fc/Fc⁺ as the internal reference (0.46 V vs. SCE) calculated from DPV.¹ ^bReported versus SCE in degassed DMF with 0.1 M [*n*Bu₄N]PF₆ as the supporting electrolyte and Fc/Fc⁺ as the internal reference (0.45 V vs. SCE) calculated from DPV,¹ ^cThe HOMO and LUMO energies were determined using the relation $E_{HOMO}/_{LUMO} = -(E^{ox}/E^{red} + 4.8) eV$,² where E^{ox} and E^{red} are the anodic and cathodic peak potentials, respectively calculated from DPV related to Fc/Fc⁺. ^d E_{H-L} = |E_{HOMO}-E_{LUMO}|.

Table S13.Solvatochromic study of ICz

Solvent	$\lambda^{a}(\epsilon) / nm (/ 10^{4} M^{-1} cm^{-1})$	$\lambda_{PL}{}^{b}$ / nm	FWHM / nm (eV)	Stokes shift / nm
PhMe	364 (9), 350 (6), 320 (7), 309 (6),	374	21 (0.18)	10
	292 (10), 285 (31)			
2-MeTHF	362 (12), 347 (8), 319 (10), 307	372	22 (0.19)	10
	(9), 291 (12), 284 (42)			
EtOAc	362 (9), 348 (6), 319 (7), 307 (7),	372	24 (0.21)	10
	292 (8), 284 (33)			
DCM	363 (8), 348 (5), 320 (7), 308 (6),	376	26 (0.22)	13
	292 (8), 285 (28)			
DMF	362 (9), 347 (6), 319 (7), 306 (6),	377	28 (0.24)	15
	291 (9), 285 (29)			

^a Obtained under aerated conditions at 298 K. ^b Concentration 0.6 - 2 x 10⁻⁵ M, λ_{exc} = 320 nm

Solvent	λ^{a} (ε) / nm (/ 10^{4} M ⁻¹ cm ⁻¹)	$\lambda_{PL}{}^{b}$ / nm	FWHM / nm (eV)	Stokes shift / nm
PhMe	379 (8), 363 (6), 330 (8), 318 (6),	387	21 (0.17)	8
	300 (14), 291 (40)			
2-MeTHF	377 (13), 361 (10), 329 (13), 316	387	22 (0.18)	10
	(10), 299 (20), 290 (65)			
EtOAc	376 (10), 360 (7), 328 (9), 315	387	25 (0.20)	11
	(7), 298 (14), 289 (50)			
DCM	377 (15), 362 (11), 329 (14), 316	389	28 (0.22)	12
	(12), 290 (72)			
DMF	376 (12), 358 (8), 329 (11), 315	391	30 (0.23)	15
	(9), 298 (21), 290 (60)			

Table S14. Solvatochromic study of ICzMes₃

 a Obtained under aerated conditions at 298 K. b Concentration 0.6 - 2 x 10^-5 M, λ_{exc} = 320 nm

Solvent	$\lambda^{a}(\epsilon)$ / nm (/ × 10 ⁴ M ⁻¹ cm ⁻¹)	$\lambda_{PL}{}^{b}$ / nm	FWHM / nm (eV)	Stokes shift / nm
PhMe	431 (11), 410 (8), 365 (39), 345	441	17 (0.11)	10
	(19), 316 (59), 307 (62), 302 (58)			
2-MeTHF	429 (14), 409 (11), 363 (46), 344	439	18 (0.12)	10
	(24), 314 (66), 305 (74), 299 (70)			
EtOAc	428 (18), 407 (14), 362 (59), 342	439	18 (0.12)	11
	(32), 313 (89), 304 (103), 299 (99)			
DCM	430 (16), 409 (13), 364 (53), 344	441	20 (0.13)	11
	(29), 315 (81), 306 (88), 300 (84)			
DMF	429 (13), 409 (10), 363 (40), 344	442	20 (0.13)	13
	(22), 314 (63), 305 (69), 300 (65)			

Table S15. Solvatochromic study of $DiICzMes_4$

^a Obtained under aerated conditions at 298 K. ^b Concentration 0.6 - 2 x 10⁻⁵ M, λ_{exc} = 380 nm

Figure S33. Solvatochromism screen of (a) ICz, (b) ICzMes₃ and (c) DiICzMes₄, where PhMe, 2-MeTHF, EtOAc, DCM and DMF are toluene, 2-methyltetrahydrafuran, ethyl acetate, 1,2-dichloromethane and dimethylformamide respectively, ICz and ICzMes₃ $\lambda_{exc} = 320$ nm, DiICzMes₄ $\lambda_{exc} = 380$ nm.

Figure **S34**. Solution-state photophysical data in toluene, emission spectra (**a**, **c**, **e**) steady-state at RT, 77 K and gated emission, $\lambda_{exc} = 330$ nm, and transient PL (**b**, **d**, **f**) at 300 K, $\lambda_{exc} = 355$ nm, with mono exponential fitting of the decays of ICz (**a** and **b**), ICzMes₃ (**c** and **d**), DiICzMes₄ (**e** and **f**).

Figure S35.Singlet and triplet spectra from **a**) simulated emission spectra of **DiCz-p-2**, Undistorted displaced harmonic oscillator model. The vertical bars show the Huang-Rhys factors for the most strongly coupled vibrational modes, calculated at TDA/DFT/PBE0/6-31G(d,p), **b**) spectra of **DiICzMes4** in toluene at 77 K, where S₁ is assigned from the SS spectrum at 77 K and T₁ from the delayed emission spectrum (150 ms delay and 50 ms integration), where overlapping components have been omitted.

Figure S36. Solid-state photophysical data in 3 wt% PMMA, emission spectra (a, c, e) steady-state at RT, 77 K and gated emission, and stacked emission spectra. ICz (a), ICzMes₃ (b), DiICzMes₄ (c), $\lambda_{exc} = 330$ nm

Doping	λ_{em} / nm	Φ_{PL} N $_2$ / %	$\Phi_{ m PL}$ Air / %	FWHM / nm	
concentration in			(eV)		
mCP / % ^a					
1	456	82	48	33 (0.19)	
3	457	82	44	40 (0.23)	
5	459	77	48	41 (0.23)	
7	459	76	57	42 (0.24)	
10	461	71	47	42 (0.24)	
15	461	62	49	47 (0.27)	
20	467	57	37	48 (0.27)	
Neat	502	30	19	56 (0.27)	

Table **S16**. Concentration dependence of **DiICzMes**₄ in mCP doped films.

^aDropcast films, $\lambda_{exc} = 350$ nm.

Table S17. Rates and	1 efficiencies	of DiICzMes ₄	in 3	wt% mCP	at 300 K.
----------------------	----------------	--------------------------	------	---------	-----------

Compound	Φp	Φ_{d}	$k_p / imes 10^7 \mathrm{s}^{-1}$	$k_{\rm d}$ / × 10 ³ s ⁻¹	$k_{\rm ISC}$ / × 10 ⁷ s ⁻¹	$k_{\rm RISC}$ / × 10 ² s ⁻¹
DiICzMes ₄	0.808	0.123	7.4	2.3	1.4	1.8

Figure S37. Solid state data of DiICzMes₄ in 3.5 wt% mCP, $\lambda_{exc} = 355$ nm, unless stated. a) prompt emission as a function of temperature, b) photoluminesence spectra at 300 K at different time delays, c) time-resolved PL at 300 K, d) steady-state PL at different doping concetrations in dropcast mCP films, $\lambda_{exc} = 350$ nm.

Figure **S38.** Time-resolved emission decays of **DiICzMes**₄ in a range of OLED hosts (10% drop cast films, (**a**) measured at room temperature, (**b**) time-resolved emission decays of **DiICzMes**₄ in 10 wt% DPEPO at various temperature and (**c**) contour plots of time-resolved PL spectra (right) in DPEPO (top) and UGH (bottom), demonstrating dimer/excimer contribution at intermediate times at this concentration. Spectra between 2×10^{-7} and 10^{-5} s represent the noise baseline of the CCD system, while monomer-like emission reappears at times beyond 10ms.

OLED Data

Figure S39. OLEDs performance of guest-host devices using DiICzMes₄ as a guest, at 20% loading.
(a) JVL, (b) EQE Vs current density and (c) EL spectra in different concentration of emitter in DPEPO host. (d) JVL, (e) EQE vs current density and (f) EL spectra in different concentration of emitter in mCBP host.

Figure **S40**. Comparison of D-A-D and hyperfluorescence OLED performance using different D-A-D cohosts (**DPAc-DtCzBN** data extracted from previous report³⁹).

Assistant	Emitter	Von	EQE _{max}	EQE ₁₀₀	EQE1000	Lum _{max /}	CIE (x,y)	λ_{EL} /	Ref
dopant		/ V	/ %	/ %	/ %	cd/m ⁻²		nm	
DMAC2-	DiICzMes ₄	3.4	16.5	15.5	12.9	1500	0.15, 0.11	446	This work
TMXanSO2						1500			
DPAc-	pICz	3.5	32.0	6.7	4.0 ^a	2400 *	0.15, 0.10	445	39
DtCzBN						2400 ª			
DMAC-DPS	tDABNA	N/A	31.4	27.2	19.8	4800 ^a	0.13, 0.15	N/A	40
DMAC-DPS	DABNA-1	N/A	23.4 ^a	20.9 ^a	15.3 ª	3800 ^a	0.14, 0.15	N/A	40
P4TCPhBN	tDABNA	N/A	32.5	30.6 ^a	23.2	N/A	0.13, 0.12	459 ª	41
PCzTrz	v-DABNA	N/A	33.5	/	24.3	N/A	0.12, 0.18	473	42
HDT-1	v-DABNA	N/A	27	24	20	N/A	0.15, 0.20	470	43
DMAC2-	v-DABNA	N/A	27.5	/	25.7 ª		N/A	474 ^a	44
TMXanSO2						IN/A			
PtON7-dtb	v-DABNA	N/A	32.2	/	25.4	N/A	0.11, 0.14	473	45
DMAC-DMT	BPPyA	N/A	15.5	N/A	11.4 ^b	N/A	0.15, 0.11	N/A	46
CzAcSF	TPBe	N/A	17.2	N/a	12.4 ^b	N/A	0.14, 0.19	N/A	47
3CzBN-Cz	Py-Cz	4.1	10.2	N/A	N/A	6200	0.15, 0.14	468	48

Table **S18**. Summary of previously reported deep blue HF-OLEDs.

^a Data extracted from graphical fitting software; ^b Obtained at 500 cd m⁻².

References

1. N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877

2. C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, *Adv. Mater.*, 2011, 23, 2367.

3. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes and R. H. Friend, *Chem. Phys. Lett.*, 1995, **241**, 89.

4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox *Gaussian 16 Rev. A.01*, Wallingford, CT, 2016.

5. A. Hellweg, S. A. Grun and C. Hattig, *Phys. Chem. Chem. Phys.*, 2008, **10**, 4119.

6. C. Hättig, J. Chem. Phys., 2003, **118**, 7751.

7. J. Thorn H. Dunning, J. Chem. Phys., 1989, **90**, 1007.

8. C. Hättig and F. Weigend, J. Chem. Phys., 2000, **113**.

9. C. Hättig and K. Hald, *Phys. Chem. Chem. Phys.*, 2002, **4**, 2111.

10. C. Adamo and V. Barone, *J. Chem. Phys.*, 1999, **110**, 6158.

11. S. Hirata and M. Head-Gordon, *Chem. Phys. Lett.*, 1999, **314**, 291.

12. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, **94**, 6081.

13. R Dennington, T. Keith and J. Millam *GaussView, Version 6.1.1*, KS: Semichem Inc.: Shawnee Mission, 2019.

14. K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.

15. T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono and T. Ikuta, *Adv. Mater.*, 2016, **28**, 2777.

16. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai and T. Hatakeyama, *Nat. Photonics*, 2019, **13**, 678.

17. Y. Xu, Z. Cheng, Z. Li, B. Liang, J. Wang, J. Wei, Z. Zhang and Y. Wang, *Adv. Opt. Mater.*, 2020, **8**, 1902142.

18. M. Yang, I. S. Park and T. Yasuda, J. Am. Chem. Soc., 2020, **142**, 19468.

19. Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu and L. Duan, *Angew. Chem. Int. Ed.*, 2019, **58**, 16912.

20. Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei and L. Duan, *Angew. Chem. Int. Ed.*, 2021.

21. S. Oda, B. Kawakami, R. Kawasumi, R. Okita and T. Hatakeyama, *Org. Lett.*, 2019, **21**, 9311.

22. J. A. Knoller, G. Meng, X. Wang, D. Hall, A. Pershin, D. Beljonne, Y. Olivier, S. Laschat, E. Zysman-Colman and S. Wang, *Angew. Chem. Int. Ed.*, 2020, **59**, 3156.

23. Y. Yuan, X. Tang, X. Y. Du, Y. Hu, Y. J. Yu, Z. Q. Jiang, L. S. Liao and S. T. Lee, *Adv. Opt. Mater.*, 2019, **7**, 1801536.

24. D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier and E. Zysman-Colman, *Adv. Opt. Mater.*, 2020, **8**, 1901627.

25. K. Wang, X.-C. Fan, Y. Tsuchiya, Y.-Z. Shi, M. Tanaka, Z. Lin, Y.-T. Lee, X. Zhang, W. Liu, G.-L. Dai, J. Chen, B. Wu, J. Zhong, Jian-YuYuan, C.-J. Zheng, J. Yu, C. Lee, C. Adachi and X.-H. Zhang, *ChemRxiv*. *Preprint*, 2021, 10.26434/chemrxiv.13699057.v1.

26. N. Aizawa, A. Matsumoto and T. Yasuda, *Sci. Adv.*, 2021, **7**, eabe5769.

27. L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi and R. H. Friend, *Nat. Photonics*, 2020, **14**, 636.

Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka and H. Kaji, *Nat. Photonics*, 2020, **14**, 643.
 M. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou and T. Yasuda,

Angew. Chem. Int. Ed., 2021, 60, 20820.

Y. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei and Y. Wang, *Angew. Chem. Int. Ed.*, 2020, **59**, 17442.
 N. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda and T. Hatakeyama, *Adv. Mater.*, 2020, **32**, e2004072.

32. V. V. Patil, H. L. Lee, I. Kim, K. H. Lee, W. J. Chung, J. Kim, S. Park, H. Choi, W. J. Son, S. O. Jeon and J. Y. Lee, *Adv. Sci.*, 2021, e2101137.

33. L. Wang, E. Ji, N. Liu and B. Dai, *Synthesis*, 2016, **48**, 737.

34. J. Lv, Q. Liu, J. Tang, F. Perdih and K. Kranjc, *Tetrahedron Lett.*, 2012, **53**, 5248.

35. C. Zhao, T. Schwartz, B. Stoger, F. J. White, J. Chen, D. Ma, J. Frohlich and P. Kautny, *J. Mater. Chem. C.*, 2018, **6**, 9914.

36. C. Maeda, T. Todaka and T. Ema, *Org. Lett.*, 2015, **17**, 3090.

37. F. B. Dias, T. J. Penfold and A. P. Monkman, *Methods Appl. Fluoresc.*, 2017, **5**, 012001.

38. K. Masui, H. Nakanotani and C. Adachi, Org. Electron., 2013, 14, 2721.

39. J. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu and L. Duan, *Angew. Chem. Int. Ed.*, 2021, **60**, 12269.

40. S. H. Han, J. H. Jeong, J. W. Yoo and J. Y. Lee, *J. Mater. Chem. C.*, 2019, **7**, 3082.

41. D. Zhang, X. Song, A. J. Gillett, B. H. Drummond, S. T. E. Jones, G. Li, H. He, M. Cai, D. Credgington and L. Duan, *Adv. Mater.*, 2020, **32**, e1908355.

42. S. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi and J. Y. Lee, *Nat. Photonics*, 2021, **15**, 208.

43. C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama and C. Adachi, *Nat. Photonics*, 2021, **15**, 203.

44. K. Stavrou, A. Danos, T. Hama, T. Hatakeyama and A. Monkman, *ACS Appl. Mater. Interfaces*, 2021, **13**, 8643.

45. S. Nam, J. W. Kim, H. J. Bae, Y. M. Maruyama, D. Jeong, J. Kim, J. S. Kim, W. J. Son, H. Jeong, J. Lee, S. G. Ihn and H. Choi, *Adv. Sci.*, 2021, **8**, e2100586.

46. D. H. Ahn, J. H. Jeong, J. Song, J. Y. Lee and J. H. Kwon, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10246.

47. I. H. Lee, W. Song, J. Y. Lee and S.-H. Hwang, J. Mater. Chem. C., 2015, **3**, 8834.

48. D. Liu, K. Sun, G. Zhao, J. Wei, J. Duan, M. Xia, W. Jiang and Y. Sun, *J. Mater. Chem. C.*, 2019, **7**, 11005.