Supporting Information Infinite-Layer/Perovskite Oxide Heterostructure Induced High-Spin States in SrCuO₂/SrRuO₃ Bilayer Films

Zhe Li^{1,2,†}, Xiaobing Chen^{1,2,†}, Yuansha Chen^{1,2,3*}, Qinghua Zhang^{1,2}, Hui Zhang^{1,2}, Jine Zhang^{1,2}, Wenxiao Shi^{1,2}, Bin He⁴, Jinxing Zhang⁵, Jinghua Song^{1,2}, Furong Han^{1,2}, Banggui Liu^{1,2}, Lin Gu^{1,2}, Fengxia Hu^{1,2}, Yunzhong Chen^{1,2}, Baogen Shen^{1,2}, and Jirong Sun^{1,2,4,6#}

¹ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

² School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

³ Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China

⁴ Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China

⁵ Department of Physics, Beijing Normal University, Beijing 100875, China

⁶ Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

[†] These authors contributed equally to this work.

E-mail: <u>*yschen@ iphy.ac.cn; #jrsun@iphy.ac.cn</u>

KEYWORDS: infinite layer, heterointerface, RuO₅-pyramids, high spin state, orbital polarization

Figure S1. (a) Atomic force microscope (AFM) topography (3 μ m × 3 μ m) of the SrTiO3 (001) surface annealed at 1000 °C. Surface with regular terraces and steps is shown. (b) Height profile along the blue arrow marked in (a). Red dashed lines mark the height of a typical step.

In the process of sample preparation, the $SrTiO_3$ sample was treated by the standard chemical etching and thermal annealing method. All $SrTiO_3$ (001) substrates were

first etched in aqua regia-based solution and then annealed in oxygen flow at 1000 $^\circ C$

for 2h. This procedure causes a recrystallization of substrate surface, leading to TiO_2 terminated surface. As shown by Fig. S1(a), regular-structured substrate surface appears, with relatively flat terrace planes and uniformly-spaced steps. The height of the step is about 0.4 nm, close to the lattice constant of $SrTiO_3$.¹ According to the literature using similar thermal treatment,^{2,3} we believed that a single TiO_2 termination layer was formed for each terrace plane.

- 1. M. R. Castell, Surf. Sci 505, 1 (2002).
- 2. N. P. Guisinger et.al, ACS Nano 3, 4132 (2009).
- 3. W. H. Zhang et. al, Chin. Phys. Lett. 31, 017401 (2014).

Figure S2. X-ray reflectivity (XRR) of the (a) SRO and (b) SCO bare films grown on the (001)-oriented STO substrates with the same deposition time of 4 min. Good agreements between fitting curves (red) and experimental curves (black) are clearly demonstrated. The simulation curve is realized by the commercial software of DIFFRAC^{plus} LEPTOS 7. The deduced thickness of SRO layers is 13 uc and the thickness of SCO layer is 18 uc.

Figure S3. (a) ~(h) *M*-*T* curves of 5, 6, 7, 8, 9, 11, 13 and 16 uc SRO bare layers (red line) and bilayers (blue line) covered with the same SCO_{40} layer. *M*-*T* curves were measured in the field cooling mode with an out-of-plane magnetic field of 500 Oe. We can see that the SCO capping layer has induced a remarkable increase in *Tc* for the SRO layers thinner than 11 uc. The magnetization extracted from the *M*-*T* curves for the bilayer films is smaller than that of corresponding bare films. It is because the SCO capping layer has also enhanced the *Hc* of the bottom SRO layer. (i) The out-of-plane *M*-*H* curves of SRO₁₆ bare layer (red line) and SCO₄₀/SRO₁₆ bilayer (blue line) at 10K.

Figure S4. (a) Structural model of a SCO₄/SRO₅ heterostructure with the [CuO₂]-[Sr]-[RuO₂] type interface for DFT calculations. The green, gray, blue and red dots represent the Sr, Ru, Cu and O ions, respectively. (b) DFT-resulted DOS on Ru, O and Sr sites for the five SRO layers, from the interfacial 1st layer to the 3rd, 4th and 5th inner layers. (c) Total *Ms* for each SRO layer. The largest *Ms* reaches ~2.8 µB/f.u. in the 1st SRO layer and is gradually reduces to ~1.8 µ_B in the 5th SRO layer, in good agreement with magnetic measurements.

Figure S5 XAS at O K-edge for the SRO₉ bare, SRO₁₇ single layer and SCO₅/SRO₉ and SCO₆/SRO₁₇ bilayer. All curves were normalized according to its e_0 , pre-edge range, and normalization range parameters. The O K-edge peaks from 528 to 535eV was divided into three parts, representing the hybridization between O 2p states and the Ru t_{2g}, Ti t_{2g} and Ru/Ti e_g states, respectively. With increased film thickness, the Ti t_{2g} peak disappears.

