Electronic Supplementary Material (ESI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for:

Interlayer exciton emission in MoS,/VOPc inorganic/organic van der

Waals heterostructure

Yuhan Kong®®, Sk Md Obaidulla®’, Mohammad Rezwan Habib®, Zukun Wang¢, Rong

Wang?, Yahya Khan®, Haiming Zhu¢, Mingsheng Xu®* Deren Yang®*

2 Department of Polymer Science and Engineering, Zhejiang University, Hangzhou
310027, P. R. China

b State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics,
Zhejiang University, Hangzhou 310027, P. R. China

E-mail: msxu@zju.edu.cn (M. S. Xu)

¢ Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

d ZJU Hangzhou Global Sci & Technol Innovat Ctr, Adv Semicond Res Inst,
Hangzhou 311215, P. R. China

¢ State Key Laboratory of Silicon Materials, School of Materials Science and
Engineering, Zhejiang University, Hangzhou 310027, P. R. China

Email: mseyang@zju.edu.cn (D. R. Yang)

fCenter of Excellence for Advanced Materials and Sensing Devices, Institute of

Physics, Bijenicka cesta 46, HR-10000 Zagreb, Croatia


mailto:msxu@zju.edu.cn
mailto:mseyang@zju.edu.cn

Model Gauss
(a ) Y=YO + (AW sqri(PI2)) " exp(-2"(x-xc)w)'2)
Equation
Reduced Chi-Sar 7866469 m VOPc/MoS
Ad). R-Squire 098574 2
Value Standard Error "
¥0 81.97057 181675 = Gauss Flt
x 363.63899 004353
w 416976 0.08965
B A 1154.7871 20.01007 A
—_ sigma 208488 0.04962 29
i) FWHM 480852 011732
= Height 22096856 419728 Model Gauss
c 1 YEY0 + (A(w*sar(PIi2)))"exp(-2*((x-xc)
3 Equation wy'2)
ko) 29
Reduced Chi-S 7256121
= Ad). R-Square 0.99449
f_Ur Value  Standard Err
¥0 7240798 128388
= * 4044517 003103
D w 601915 0.06916
c ) A 2698767 3166288
Q sigma 300858  0.03458
- FWHM 7.08701  0.08143
= 357.7420 33208
1 i 1 i 1 L | i | L | L 1

390 400 410 430

Raman Shift (cm™)

Figure S1. Gaussian fitting of Raman spectra of VOPc/MoS, heterostructure: the
calculated full width at half maximum (FWHM) corresponding to Ey,!' (386 cm-1) ~
4.91 and A, (406 cm!) ~7.09, respectively.
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Figure S2. Gaussian fitting of Raman spectra of SnCl,Pc/MoS, heterostructure: the
calculated FWHM corresponding to Es,!' (386 cm-1) ~4.51 and A, (406 cm!) ~7.24,

respectively.
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Figure S3. Gaussian fitting of Raman spectra of ML MoS,, the calculated FWHM
corresponding to E,,’ (386 cm-1) ~4.11 and 4, (406 cm™!) ~6.02, respectively.
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Figure S4. PL spectra (including individual constituent and sample background) of
(a) VOPc/MoS; and (b) SnCl,Pc/MoS, heterostructures and right side corresponding

to 5 different samples.
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Figure S5. Peak fit of VOPc/MoS,; heterostructure in which MoS, (668 nm), VOPc
(880 nm), and the striking feature NIR emission peak at 805 nm (green line) are

clearly resolved.
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Figure S6. Peak fit of SnCl,Pc/MoS, heterostructure in which MoS, (686 nm) and
SnCl,Pc (766 nm) are clearly resolved.
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Figure S7. Ultraviolet photoelectron spectroscopy (UPS) spectrum (hv = 21.22 eV)
(a,b) VOPc and VOPc/MoS, on pure highly doped Si substrate, (c,d) SnCl,Pc and
SnCl,Pc/MoS; on pure highly doped Si substrate. The thickness of organic thin films
is about 5 nm. Please note that the MoS, was firstly synthesized on SiO, surface and

then transfer to Si substrate for fabricating heterostructures for UPS measurement.
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Figure S8. (a, b) UV-vis absorbance spectrum of VOPc and SnCl,Pc films,
respectively and corresponding their tauc plots (¢, d) of (ahv)"? as a function of
energy based on (ahv)!?=C (hv-E,), where a, h, v, C, and E, are the absorption
coefficient, Planck’s constant, the incident light frequency, proportionality constant,

and the band-gap energy, respectively.

To find out the optical band gap of VOPc film, we plot the UV-vis absorption
spectrum of the VOPc film by using the Tauc equation.l] Thus, bandgap energy
(~1.41 eV) of the VOPc film is estimated from Figure S8b. Based on the UPS results
(Figure S7a, b), the HOMO level of the VOPc film is determined to be about 5.12
eV. From the UPS results, we can get the Fermi energy (EF) is around at 0.70 eV and
the Eu.qp 1s around at 16.8 eV. So we can calculate the Exopo.  Enomo = 21.22 -
(16.8-0.70) = 5.12 eV. From UV-vis and UPS measurements, we calculate the LUMO
of VOPc film, about 3.71 eV, thus we calculate the HOMO/LUMO (5.12 eV/3.71 eV)
energy levels of VOPc molecules. The HOMO/LUMO (5.41 eV/3.79 eV) energy

level of SnCl,Pc molecules can also be calculated by the same method. 12

DFT predicted structure of MPc (M=VO, SnCl;)/MoS; heterostructure



The geometry of VOPc and SnCl,Pc molecules on monolayer MoS, are predicted by
geometry optimization calculation using PBE functional as implemented in VASP.
The initial structure of MoS,/MPc (M=VO, SnCl,) was designed by minimizing the
lattice mismatch between MoS, monolayer and organic molecules. The strain due to
the lattice mismatch were applied to the organic layer. After that the atomic positions
of constituents in the heterostructures were relaxed by the PBE functional as
implemented in VASP. The structure of VOPc/MoS, and SnCl,Pc/MoS, are relaxed
to their minimum energy during the structural optimization. The orientations of the
molecules with respect to MoS, in the molecule/MoS, heterostructure are depicted in

Figure S9.
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Figure S9. Optimized structure of (a) VOPc/MoS, (b) SnCl,Pc/MoS; heterostructure.

dy denotes the interlayer spacing between MoS, and organic layer.



State projected density of VOPc/MoS, heterostructure
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Figure S10. Density and projected density of states of VOPc/MoS2 heterostructure
projected. A, B, and D, E represent the states below and above the Fermi level. The
states at the Fermi level is denoted by C. The corresponding charge density for A, B,
C, D and E states are depicted.



Effect of interlayer spacing on the density of states:
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Figure S11. Variation of density of states with the interlayer spacing between MoS,
and VOPc layer in VOPc/MoS, heterostructure. The equilibrium interlayer separation
between MoS, and VOPc layer is dy A.
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Figure S12. Variation of density of states with the interlayer spacing between MoS,
and SnCl,Pc layer in SnCl,Pc/MoS, heterostructure. The equilibrium interlayer

separation between MoS, and SnCl,Pc layer is dy A.
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Figure S13. Transient absorption (a) SnCl,Pc/MoS,, (b) ML-MoS,, and (c¢) SnCl,Pc.
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Figure S14. TA kinetics of the VOPc signal in MoS,/VOPc heterostructure (green)
and pure VOPc only (red), under 800 nm excitation. The results show that in the
heterostructure, the decay of the signal became faster, indicating the existence of

charge transfer from VOPc to MoS,.
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Figure S15. TA kinetics of the MoS; signal in MoS,/VOPc heterostructure at 660 nm,

under 800 nm excitation.
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Figure S16. (a) PL spectra at the excitation wavelength of 532 nm and with varying
excitation intensities. (b) Integrated PL intensity of MoS,, NIR peak at 805 nm and
VOPc as a function of the laser intensity plotted on a log—log scale for excitation at
532 nm. (c) PL spectra at the excitation wavelength of 785 nm and with varying
excitation intensities. (b) Integrated PL intensity of NIR peak at 805 nm and VOPc as

a function of the laser intensity plotted on a log—log scale for excitation at 785 nm.

PL measurements were made at room temperature using a Renishaw inVia Raman
microscope using excitation wavelengths of 532 nm and 785 nm. The laser beam was
focused on to the samples via a 50% objective lens producing a spot diameter of
~1 um. The maximum laser power was kept at ~25 mW (532 nm) and 150 mW (785

nm) and it was varied using neutral density filters from 0.000001% to 100%.
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We find that the PL intensity of MoS,, new peak at 805 nm, and VOPc increases
linearly with excitation power both under 532 nm and 785 nm laser beam. It is
surprised that the PL intensity of MoS, excesses that of the new 805 nm when the
excitation fluence is 2.5 mw. More studies are needed to understand the underlying

mechanisms.

References

1. M. R. Habib, H. F. Li, Y. H. Kong, T. Liang, S. M. Obaidulla, S. Xie, S. P.
Wang, X. Y. Ma, H. X. Su and M. S. Xu, Nanoscale, 2018, 10, 16107-16115.

2. M. Ichikawa, S. Deguchi, T. Onoguchi, H. G. Jeon and G. D. Banoukepa, Org
Electron, 2013, 14, 464-468.

3. D. Kaplan, Y. Gong, K. Mills, V. Swaminathan, P. M. Ajayan, S. Shirodkar and
E. Kaxiras, 2D Materials, 2016, 3, 015005.

15



