Supporting Information

Facile fabrication of polyvinyl alcohol-based hydrophobic,

fluorescent film via Hantzsch reaction for broadband UV protection

Hongchen Liu,*^{ab} Hongying Yang,^a Kunkun Zhu,*^c Fang Peng,^b Lei Guo^b and Haisong Qi*^b

^a College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China

^b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China

^c State Key Laboratory of New Textile Materials and Advanced Processing
Technologies, Wuhan Textile University, Wuhan 430200, China

*Corresponding Author, E-mail: liuhongchen.beyond@163.com

Fig. S1 (a) FT-IR spectra of PVA, PVAA, and fluorescent film, (b) ¹H NMR spectra of PVAA in DMSO- d_6 , (c) XPS wide-scan spectra of PVAA film, (d) high-resolution C1s spectra of PVAA, (e) and high-resolution O1s spectra of PVAA.

Fig. S2 FT-IR spectra of PVAA and HA-PVA, DA-PVA, and SA-PVA films films.

Fig. S3 High-resolution spectra of the HA-PVA film (a) C1s, (b) N1s, (c) O1s, and high-resolution spectra of the SA-PVA film (d) C1s, (e) N1s, (f) O1s.

UT	SCUT	SCULUT	SCUT	SC	SCUT	SCUT
UT	SCUT	SCUCUT	SCUT	SC JT	SCUT	SCUT
UT	SCUT	CU IIT	SCUT	JT	SCUT	SCUT
	ACTIC	2 cm	SCOI	² cm JT	SCUT	SCUT

Fig. S4 Photograph of (a) HA-PVA, (b) SA-PVA, and (c) PVAA film.

Samula	Element content (%)				
Sample	Ν	С	Н		
PVAA	0	51.75	8.62		
HA-PVA	0.33	49.49	9.69		
DA-PVA	0.32	49.83	9.08		
SA-PVA	0.52	48.74	9.44		

Table S1 Elemen	tal analysis of P	VA, PVAA, a	nd FA-PVA-0.8 film
-----------------	-------------------	-------------	--------------------

Fig. S5. Digital photos of DA-PVA film (60 cm⁶⁰ cm) under 365 nm UV-light.

Fig. S6 Digital photos of PVA (a), HA-PVA (b), and SA-PVA(c) film under 365 nm UVlight radiation after soaking in different solvents for 24 h.

Fig. S7 Fluorescence spectra of DA-PVA film with soaking in different solvents for 24 h.

Fig. S8 UV–vis transmittance curves of HA-PVA (a) and SA-PVA (b) film after soaking in different solvents for 24 h.

Fig. S9 (a) UV–vis transmittance curves of DA-PVA fluorescent film with different thicknesses, (b) magnified images from 400 to 550 nm wavelengths.

Table S2 The transparency and UV-blocking performance of DA-PVA film with differen	ıt
thicknesses.	

Samplag	Thickness (µm)					
Samples	100	150	200	300	400	600
UV-blocking	Q4%	07%	100%	100%	100%	100%
at 400 nm	74 /0	9770				
Transmittance	91%	91%	90%	89%	88%	86%
at 550 nm						

Fig. S10 (a)The chemical structure of phenyl salicylate and (b) UV–vis transmittance curves of PVA, DA-PVA, and PVA/PS film.