Polymer Dielectric Films Exhibiting Superior High-Temperature Capacitive

Performance by Utilizing an Inorganic Insulation Interlayer

Tiandong Zhang,^a Lianyin Yang,^a Changhai Zhang,^a Yu Feng,^a Jian Wang,^b Zhonghui Shen,^{*b} Qingguo Chen,^a Qingquan Lei,^a Qingguo Chi,^{*a}

T. D. Zhang, L. Y. Yang, C. H. Zhang, Y. Feng, Q. G. Chi, Q. G. Chen, Q. Q. Lei E-mail: <u>qgchi@hrbust.edu.cn</u>
^aSchool of Electrical and Electronic Engineering
Harbin University of Science and Technology
Harbin, China
J. Wang, Z. H. Shen
E-mail: <u>zhshen@whut.edu.cn</u>
^bInternational School of Materials Science and Engineering
Wuhan University of Technology
Wuhan, China

Finite-element simulations

In order to qualitatively understand the charge carrier behaviors in nanocomposites, a unipolar electron injection and transport model is established. Here, we describe electrons injected from the metal electrode into the dielectric by Schottky thermionic emission, which is expressed as

$$J_{e} = AT^{2} \exp\left(-\frac{\varphi_{i}}{k_{B}T}\right) \exp\left(\frac{e}{k_{B}T}\sqrt{\frac{eE}{4\pi\varepsilon_{0}\varepsilon_{r}}}\right)$$
(S1)

where J is the current density, A is the Richardson constant, T is the temperature, φ_i is the injection potential barrier, k_B is the Boltzmann constant, e is the elementary charge, E is the electric field, ε_0 is the vacuum permittivity, ε_r is the relative permittivity, respectively.

The behavior of charge within the films is governed by the following equations: Poisson's equation,

$$\frac{\partial \psi(\mathbf{r}, \mathbf{t})}{\partial r_{i} \partial r_{j}} = \frac{\rho(\mathbf{r}, \mathbf{t})}{\varepsilon_{0} \varepsilon_{r}}$$
(2)

Current continuity equation,

$$\frac{\partial n(\mathbf{r},\mathbf{t})}{\partial \mathbf{t}} + \frac{\partial J(\mathbf{r},\mathbf{t})}{\partial \mathbf{r}} = s$$
(3)

Charge transport equation,

$$J(\mathbf{r}, \mathbf{t}) = \mu(\mathbf{r}, \mathbf{t})n(\mathbf{r}, \mathbf{t})E(\mathbf{r}, \mathbf{t})$$
(4)

where ψ the electrical potential, ρ the total charge density (here equal $n(\mathbf{r},t)$), s the source term (*s*=0 in this simulation), μ the mobility of charge.

Table 1

Definition of parameters used in this simulation.

Parameter	Values	Units
Charge mobility of PEI	1×10^{-10}	$cm^2/(V \cdot s)$
Charge mobility of MgO	1×10^{-13}	$cm^2/(V \cdot s)$
Dielectric constant of PEI	3.15	
Dielectric constant of MgO	9.8	
Electric field	100	MV/m
Temperature	423	Κ
Schottky barrier	1.55	eV

Figure S1 Cross-sectional structure of SEM images of (a) PBP films. (b) PEI/BN films. (c) PEI/MgO films.

Figure S2 SEM-EDX mapping of PMP films.

Figure S3 Representative low-magnification of SEM image of PMP films.

Figure S4 XRD patterns of (a) MgO powder. (b) PEI/MgO films. (c) PMP films. (d) BN powder. (e) PEI/BN films. (f) PBP films.

Figure S5 FTIR spectra of (a) PEI/MgO films. (b) PMP films. (c) PEI/BN films. (d) PBP films.

Figure S6 Frequency-dependent and temperature-dependent dielectric properties measured at 150°C and 1 kHz, respectively. (a) (b) PEI/MgO films. (c) (d) PEI/BN films. (e) (f) PBP films.

Figure S7 Electronic structure of (a1) PEI, (a2) MgO, (a3) PEI and MgO. Band diagrams at PEI/MgO interface. (b) PEI and MgO interlayer before contact. (c) PEI and MgO interlayer after contact. Herein, E_g is bandgap, E_F is Fermi levels, E_{HOMO} stands for the highest occupied molecular orbital of the dielectric, E_{cutoff} represents the energy of secondary electron cutoff. ϕ_p is the work function, EA_p is the electron affinity, E_{vac} is the vacuum energy level. ϕ_e is the potential barrier for electrons, and ϕ_h is the potential barrier for holes.

Figure S8 Weibull distribution of (a) PEI/BN films. (b) PBP films. (c) PEI/MgO films measured at 150°C. (d) Comparison of breakdown strength of resultant films in this work measured at 150°C.

Figure S9 Hysteresis loops measured at 150°C of (a) PEI/MgO-3 film. (d) PEI/BN-3 film. (g) PBP-5 film. Discharged energy density and efficiency of (b) PEI/MgO-3 film. (e) PEI/BN-3 film. (h) PBP-5 film at various temperatures. Discharged energy density and efficiency of (c) PEI/MgO films. (f) PEI/BN films. (i) PBP films measured at 150°C.

Figure S10 Cross-sectional structure of SEM images of PMP films after 50000 charge/discharge cycles.