Supplementary

number	Patient ID	gender	age	TNM
1	C29639	female	66	AJCC pT3N1b
2	C29648	male	57	AJCC pT3N1b
3	C29761	male	84	AJCC pT3N2a
4	C29788	male	87	AJCC pT3 (2) N1a
5	C29658	female	48	AJCC pT3N1c
6	C29773	female	45	AJCC pT3N2a
7	C33136T/154N*	female/ female	64/52	AJCC pT3N2b/ AJCC pT3N2b
8	C33256	female	33	AJCC pT4aN1a
9	156	male	58	AJCC pT3N2a
10	158	male	69	AJCC pT4aN1a

Table 1 meta data of patients

* this pair is not from one patient. T: tumor; N: normal

Method

GC-MS

A capillary GC/MS system, Agilent model 7890-5975 (Agilent, MA, USA), equipped with a Class 5000 data processing system, was used. The capillary column was a fused-silica DB-5 one (30 m 3 0.25 mm i.d.) with a 0.25-mm film thickness of 5% phenylmethylsilicone. Mass spectra were obtained by standard electron impact ionization scanning from m/z 50 to m/z 750 at a rate of 0.35 s/cycle. The temperature program was started at 150°C with an initial holding for 1 min, and was then increased at a rate of 10°C /min to 285°C with a final holding for 8 min. The temperatures of the injection port and transfer line were both 280°C. Flow rate of the helium carrier was 1.5 ml/min, and the linear velocity was 38.5 m/s. One ml of the final derivatized aliquot was injected into the GC/MS and analyzed in

the split mode (10:1).

Figure1

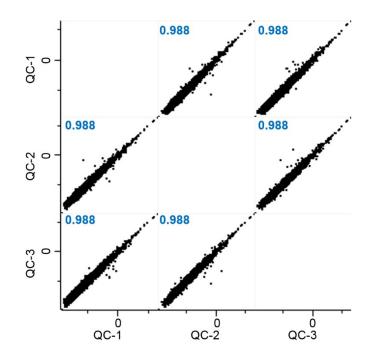


Figure 1 Pearson correlation analysis of QC samples the value greater than 0.9 shows good correlation