SUPPORTING INFORMATION

Delineating Toxicity Mechanisms Associated with MRI Contrast

Enhancement through a Multidimensional Toxicogenomic Profiling of

Gadolinium

Roger M. Pallares,¹ Dahlia D. An,¹ Solène Hébert,¹ David Faulkner,¹ Alex Loguinov,²

Michael Proctor,² Jonathan A. Villalobos,¹ Kathleen A. Bjornstad,¹ Chris J. Rosen,¹

Christopher Vulpe,² and Rebecca J. Abergel^{1,3,*}

Affiliations:

¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

²Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA

³Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA

*E-mail: <u>abergel@berkeley.edu</u>

Table of Contents

Figure S1. Growth curves of wild-type strain under different gadolinium concentrations for
IC determinations
Figure S2. Non-competitive growth of representative strains in absence and presence of IC ₂₀
some of gadolinium
Figure S3. Top 18 overrepresented GO terms under the different gadolinium treatments S4
Figure S4. Protein-protein interaction network analysis identified key protein pairs involved
in yeast response to gadolinium
Figure S5. Protein-protein interaction network analysis with protein-protein associations S6
Table S1. Parameters of protein-protein interaction network analysis S7
Table S2. Human orthologues of genes associated with gadolinium toxicity in yeast
References

Figure S1. Growth curves of wild-type strain under different gadolinium concentrations for IC determinations. The IC₅, IC₁₀ and IC₂₀ were determined at 0.09, 0.12 and 0.16 mM Gd³⁺.

Figure S2. Non-competitive growth of representative strains in absence and presence of IC₂₀ concentrations of gadolinium. The inhibition growth values after IC₂₀ gadolinium treatments in log_2 scale under non-competitive conditions (black) are compared to the values obtained under competitive conditions (grey). The full list of strains and their inhibition growth values under competitive conditions are presented in Dataset S1.

Figure S3. Top 18 overrepresented GO terms under the different gadolinium treatments.

Figure S4. Protein-protein interaction network analysis identified key protein pairs involved in yeast response to gadolinium. Network of proteins coded by genes whose deletion promoted sensitivity to gadolinium. All genes affected by at least 3 gadolinium treatments were considered (n = 63). Proteins with more than one connection were displayed in Figure 5a. Proteins without connections were not displayed for clarity. The network analysis was performed with STRING and a cutoff for confidence interactions of 0.90 (highest confidence).

Figure S5. Protein-protein interaction network analysis with protein-protein associations. (a) Network of proteins coded by genes whose deletion promoted sensitivity to gadolinium. All genes affected in at least 3 experimental conditions were considered (n = 63). (b) Network of proteins coded by genes whose deletion promoted resistance to gadolinium. All genes affected in at least 2 experimental conditions were considered (n = 30). Proteins without connections were not displayed for clarity. The network analysis was performed with STRING and a cutoff for confidence interactions of 0.90 (highest confidence).

Table S1. Parameters of protein-protein interaction network analysis

	Sensitive Network	Resistant Network
Number of edges	56	3
Average node degree	1.84	0.207
Average local clustering coefficient	0.415	0.069
PPI enrichment p-value	< 10 ⁻¹⁶	0.000935

Yeast gene	Human gene ortholog	Human protein	Pathologies
SCJ1	DNAJB11	DnaJ heat shock protein family member B11	Kidney disease that results on interstitial fibrosis ¹
CNE1	CALR	Calreticulin	Myelofibrosis ²
CNE1	CLGN	Calmegin	Kidney fibrosis through MAPK signaling pathway ³
CNE1	CANX	Calnexin	
ALG8	ALG8	ALG8 alpha-1,3-glucosyltransferase	
APS1	AP1S1	Adaptor related protein complex 1 subunit sigma 1	MEDNIK syndrome and hepatic fibrosis ⁴
APS1	AP1S2	Adaptor related protein complex 1 subunit sigma 2	
APS1	AP1S3	Adaptor related protein complex 1 subunit sigma 3	Skin autoimmune disorder ⁵
APL6	AP3B1	Adaptor related protein complex 3 subunit beta 1	Pulmonary fibrosis ^{6,7}
APL6	AP3B	Adaptor related protein complex 3 subunit beta 2	Pulmonary fibrosis ⁶
YPL191C	MINDY1	MINDY lysine 48 deubiquitinase 1	Acute respiratory distress syndrome and pulmonary fibrosis ⁸
YPL191C	MINDY1	MINDY lysine 48 deubiquitinase 1	Acute respiratory distress syndrome and pulmonary fibrosis ⁸
UBP15	USP7	Ubiquitin specific peptidase 7	Cardiac fibrosis ⁹
TOR1	mTOR	Mechanistic target of rapamycin kinase	Pulmonary and cardiac fibroses ^{10,11}
YDR018C	LCLAT1	Lysocardiolipin acyltransferase 1	Pulmonary fibrosis ¹²
YDR018C	AGPAT3	1-acylglycerol-3-phosphate O-acyltransferase 3	
YDR018C	AGPAT4	1-acylglycerol-3-phosphate O-acyltransferase 4	
YDR018C	AGPAT5	1-acylglycerol-3-phosphate O-acyltransferase 5	
CAT1	CAT	Catalase	
GLO2	HAGH	Hydroxyacylglutathione hydrolase	
GLO2	HAGHL	Hydroxyacylglutathione hydrolase like	
GLO2	PNKD	PNKD metallo-beta-lactamase domain containing	
UNG1	UNG	Uracil DNA glycosylase	
PHM7	TMEM63A	Transmembrane protein 63A	
PHM7	TMEM63B	Transmembrane protein 63B	
MOH1	YPEL1	Yippee like 1	
MOH1	YPEL2	Yippee like 2	
MOH1	YPEL3	Yippee like 3	
MOH1	YPEL4	Yippee like 4	Pulmonary fibrosis ¹³
MOH1	YPEL5	Yippee like 5	
CEX	SCYL1	SCY1 like pseudokinase 1	
CEX	SCYL3	SCY1 like pseudokinase 3	

Table S2. H	luman orthologue	s of genes assoc	iated with gadolin	ium toxicity in yeast

References

- 1 Cornec-Le Gall, E. *et al.* Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. *The American Journal of Human Genetics* **102**, 832-844, (2018).
- 2 Diamond, J. M. S. *et al.* CALR-mutated primary myelofibrosis evolving to chronic myeloid leukemia with both CALR mutation and BCR-ABL1 fusion gene. *Annals of Hematology* **95**, 2101-2104, (2016).
- 3 Trivedi, P. *et al.* Targeting Phospholipase D4 Attenuates Kidney Fibrosis. *Journal of the American Society of Nephrology* **28**, 3579, (2017).
- 4 Martinelli, D. *et al.* MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. *Brain* **136**, 872-881, (2013).
- Mahil, S. K. *et al.* AP1S3 Mutations Cause Skin Autoinflammation by Disrupting Keratinocyte Autophagy and Up-Regulating IL-36 Production. *J. Invest. Dermatol.* 136, 2251-2259, (2016).
- 6 Suda, T. in *Clinical Relevance of Genetic Factors in Pulmonary Diseases* (ed Takeshi Kaneko) 107-133 (Springer Singapore, 2018).
- 7 Matt, W. *et al.* Two patients with Hermansky Pudlak syndrome type 2 and novel mutations in AP3B1. *Haematologica* **95**, 333-337, (2010).
- Li, T. & Zou, C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. *Int. J. Mol. Sci.* **21**, 4842, (2020).
- 9 Burke, R. M. *et al.* Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. *Proc. Natl. Acad. Sci.* **115**, E3436, (2018).
- Samidurai, A., Kukreja, R. C. & Das, A. Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. *Oxidative Medicine and Cellular Longevity* 2018, 6141902, (2018).
- 11 Lawrence, J. & Nho, R. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis. *Int. J. Mol. Sci.* **19**, 778, (2018).
- 12 Noth, I. et al. in A95. Cutting Edge Insights to the Pathobiology of COPD and Interstitial Lung Disease American Thoracic Society International Conference Abstracts A2266-A2266 (American Thoracic Society, 2011).
- 13 Truong, L., Zheng, Y.-M., Song, T., Tang, Y. & Wang, Y.-X. Potential important roles and signaling mechanisms of YPEL4 in pulmonary diseases. *Clinical and Translational Medicine* **7**, 16, (2018).