Supplemental

Polarisation tunable piezo-catalytic activity of Nb-doped PZT with low Curie temperature for efficient $\mathbf{H}_{\mathbf{2}}$ generation and $\mathbf{C O}_{\mathbf{2}}$ reduction

Yan Zhang ${ }^{1, *}$, Pham Thi Thuy Phuong2, 3, *, \#, Nguyen Phuc Hoang Duy ${ }^{2}$, Eleanor Roake ${ }^{4}$, Hamideh Khanbareh ${ }^{4}$, Margaret Hopkins ${ }^{4}$, Xuefan Zhou ${ }^{1}$, Dou Zhang¹, Chris Bowen4, \#
1 State Key Laboratory of Powder Metallurgy, Central South University, Hunan, 410083, China
2 Institute of Chemical Technology, Vietnam Academy of Science and Technology, TL29 Street, Thanh Loc Ward, District 12, HCM City, Vietnam
3 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
4 Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
* Those authors contributed equally.
\# Corresponding authors: pttphuong@ict.vast.vn; c.r.bowen@bath.ac.uk

(A)

(B)

Figure S1. (A) Complete experimental setup for piezo-catalysis based on double-bath-type sonoreactor, and (B) experimental setup for calorimetric measurement.

1 - Ultrasonic bath; 2 - Reactor vial; 3 - Inside thermocouple; 4 - Outside thermocouple; 5 -

Timer controller; 6 - Peristaltic pump; 7 - Cooling coil; 8 - Cooling bath thermocouple; 9 -

Figure S2. Temperature profiles of calorimetric measurements at different height locations of

$$
z=10,13,17 \text {, and } 27 \mathrm{~mm} \text {, as indicated in Figure } \mathrm{S} 1(\mathrm{~B}) .
$$

Figure S3. SEM images of the used PZTN powders at dosage of (A) $0.1 \mathrm{~g} / \mathrm{L}$. and (B) 1.0 g/L

Figure S4. PFM images of PZTN powders. (A) 2D Amplitude image, (B) PFM phase image.

Figure S5.Room-temperature P-E hysteresis loop of the unpoled dense PZTN disk.

Figure S6. Effect of water bath temperature on the hydrogen and CO production rate (catalyst dosage $0.1 \mathrm{~g} / \mathrm{L}$, $\mathrm{t}_{\text {react }}=30 \mathrm{~min}$)

