Supporting Information

Hairy silica nanospheres supported metal nanoparticles for reductive degradation

of dye pollutants

Xin Chen,^a Li Zhang ,^a Bin Xu,^b Tingting Chen,^a Lianhong Hu,^a Wei Yao,^a Mengxiang Zhou,^a and Hui Xu^{*a}

^{*a*}Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.

^bNanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.

*Correspondence to E-mail:<u>ias_hxu@njtech.edu.cn</u>.

Figure S1. Low magnification TEM images of the as-prepared (a) SiO₂-*g*-P4VP/AuNP and (b) SiO₂-*g*-P4VP/AgNP composites.

Figure S2. Solutions of 4-NP (a) before and (b) after reduction, RhB (c) before and (d) after reduction.

Figure S3. TEM images of (a) SiO_2 -*g*-P4VP/AuNPs and (b) SiO_2 -*g*-P4VP/AgNPs composites after the fifth recycling.

Figure S4. Proposed mechanism for the reduction of 4-nitrophenol catalyzed by SiO₂*g*-P4VP/AuNPs.

Figure S5. Proposed mechanism for the reduction of RhB catalyzed by SiO₂-*g*-P4VP/AgNPs.

Figure S6. The degradation of organic dyes (a) 4-NP and (b) RhB for SiO_2 -*g*-P4VP in the presence of NaBH₄ as the blank control test.

Figure S7. The adsorption experiments of organic dyes (a) 4-NP and (b) RhB on SiO₂*g*-P4VP examined by UV–vis spectra monitoring. 10 mL of organic dyes (0.02 mg/mL) in aqueous solution was added with 1 or 5 mg of SiO₂-*g*-P4VP and mixed well by a vortex mixer. The suspension was incubated at room temperature for 2 h and then centrifuged at 6000 rpm for 10 min.

Dyes	Nanocatalysts	Dye removal efficiency ^a	Reference
4-NP ^b	Au@ porous SiO ₂	~40%	1
	SiO2@PDMAEMA-Au	~20%	2
	SiO ₂ -g-P4VP/AuNPs	92.7%	This work
RhB ^c	RGO/Ag	~50%	3
	SiO ₂ /Ag	~10%	4
	SiO ₂ -g-P4VP/AgNPs	99.4%	This work

Table S1. Dye pollutant removal efficiency for the reductive degradation by compared

 with MNPs by different supports in previously reported works.

^{*a*}The dye decolorization was monitored by UV–vis absorbance and the dye pollutant removal efficiency was calculated using the following formula:

Dye removal efficiency (%) = $\frac{A_0 - A_t}{A_0} \times 100$

where A_0 is the absorbance before decolorization, A_t is the absorbance after certain time *t* of dye removal.

 $^{b}t = 10 \text{ min}, ^{c}t = 8 \text{ min}.$

Table S2. ICP characterizations of the SiO₂-*g*-P4VP/MNPs nanocatalysts before and after the reaction.

Catalyst	SiO ₂ -g-P4VP/MNPs	SiO ₂ -g-P4VP/MNPs	
Catalyst		(5 cycles later)	
Au(wt%)	14.6%	13.7%	
Ag(wt%)	6.9%	6.2%	

Reference

- 1. Z. Wang, H. Fu, D. Han and F. Gu, The effects of Au species and surfactant on the catalytic reduction of 4-nitrophenol by Au@SiO₂, *J. Mater. Chem. A*, 2014, **2**, 20374-20381.
- J. Chen, P. Xiao, J. Gu, D. Han, J. Zhang, A. Sun, W. Wang and T. Chen, A smart hybrid system of Au nanoparticle immobilized PDMAEMA brushes for thermally adjustable catalysis, *Chem. Commun.*, 2014, 50, 1212-1214.
- K. S. Divya, A. Chandran, V. N. Reethu and S. Mathew, Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution, *Appl. Surf. Sci.*, 2018, 444, 811-818.
- 4. İ. Deveci and B. Mercimek, Performance of SiO₂/Ag Core/Shell particles in sonocatalalytic degradation of Rhodamine B, *Ultrason. Sonochem.*, 2019, **51**, 197-205.