High performance photodetector based on 1D Te-2D WS_2 mixed-dimensional heterostructure

Lixiang Han,^a Mengmeng Yang,^a Peiting Wen,^b Wei Gao,^{*b} Nengjie Huo^{*b} and Jingbo Li^b

- a. School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- ^{b.} Institute of Semiconductors, South China Normal University, Guangzhou 510631, P.R. China
- * Corresponding author (email: gaowei317040@m.scnu.edu.cn; njhuo@m.scnu.edu.cn)

Figure S1. The schematic diagram of the fabrication process of the mixed-dimensional heterostructure device.

Figure S2. The SEM image of the device.

Figure S3. The PL mapping image of the heterostructure under 860 nm light excitation.

Figure S4. Transfer properties and I-t characteristics. (a) Transfer curve of Te microwire, (b) Transfer curve of WS_2 nanosheet, (c) Rectification curve of the mixed-dimensional heterostructure device, (d) I-t characteristics of WS_2 nanosheet with external bias voltage of -2 V under 635 nm light illumination.

Figure S5. The photocurrent dependent on the light power intensity by a power law of the heterostructure with bias of -2V under 635 nm light illumination.

Figure S6. Photoresponse properties of the pristine WS_2 nanosheet under incident laser of 635 nm. (a), (b) demonstrate the photoresponsivity, net photocurrent, EQE and D^{*} of the WS_2 as a function of light power intensity with V_{ds} of -2V, respectively.

Figure S7. Photoresponse time of the WS_2 nanosheet.

Figure S8. Light power-wavelength diagram.

Figure S9. Photoresponse properties of the mixed-dimensional heterostructrue Te microwire and WS₂ nanosheet based photodetector under incident laser of 532 nm. (a), (b) demonstrate the photoresponsivity, net photocurrent, EQE and D^{*} of the device as a function of light power intensity with external bias voltage V_{ds} of -2V, respectively. (c), (d) display the responsivity, pure photocurrent, EQE and D^{*} of the device as a function of light power intensity without bias voltage, respectively.