Perpendicularly magnetized Co/Pd-based magneto-resistive heterostructures on flexible substrates

M. Hassan^{1,3}, S. Laureti¹, C. Rinaldi², F. Fagiani², S. Varotto², G. Barucca³, N. Y. Schmidt⁴, G. Varvaro^{1*}, M. Albrecht⁴

¹Istituto di Struttura della Materia, CNR, NM²-Lab, Monterotondo Scalo (Roma), 00015, Italy ²Department of Physics and IFN-CNR, Politecnico di Milano, via G. Colombo 81, 20133 Milano, Italy ³Università Politecnica delle Marche, Dipartimento SIMAU, Via Brecce Bianche, Ancona 60131, Italy ⁴Institute of Physics, University of Augsburg, Universitätsstraße 1 Nord, D-86159 Augsburg, Germany

*gaspare.varvaro@ism.cnr.it

Supporting Information

Figure S1. Room temperature field-dependent resistance loops in the low-field region (-0.15 – 0.15 mT) of thin film stacks with t_{Cu} = 2nm deposited on Au/SiO_x/Si(100). Measurements were performed for two opposite magnetic configurations of the SAF obtained by saturating the sample with either a negative (- H_{sat} . panel a) or a positive (+ H_{sat} , panel b) saturation field of 1 T. Thin arrows indicate the field swept direction, while the thick arrows illustrate the mutual alignment of the magnetization in the FL, *top*-RL, and *bottom*-RL at different points in the loop. The hysteresis loop of the FL is subjected to a magnetic bias due to its interaction with the *top* SAF-RL whose sign depends on the magnetic configuration of the SAF: when its top layer points inward (outward) the shift is positive (negative).

20 nm

Figure S2. TEM bright field image of a spin-valve stack ($t_{Cu} = 3 \text{ nm}$) on Au/SiOx/Si(100). The roughness at the interface between the Au underlayer and the successive Ta layer is clearly visible (yellow arrows and dotted line).

Figure S3. Schematic representation of a bended system with out-of-plane magnetic anisotropy (EA: easy-axis) placed in an uniform magnetic field (*H*). Each region of the sample will experience a different angle with the external magnetic field, which depends on the sample curvature.

Figure S4. Geometrical definition of the bending angle θ (°) = $L \cdot 360/2\pi r$; *r* is the radius of the semi-cylindrical plastic support and *L* is the distance between the electrical contacts along the side of the sample parallel to the bending.