## **Electronic Supplementary Information**

## A nano interlayer spacing and rich defect 1T-MoS<sub>2</sub> as cathode for

## superior performance aqueous zinc-ion batteries

Chengyan Cai, ‡ª Zengren Tao, ‡ª Yuanfei Zhu, ª Yuanming Tan, ª Anding Wang, ª

Haiyun Zhou <sup>a,\*</sup> and Yangyi Yang <sup>a,\*</sup>

<sup>a</sup>School of Materials Science and Engineering, Sun Yat-sen University Test Center,

Sun Yat-sen University, Guangzhou, 510275, China.

E-mail: zhouhy@mail.sysu.edu.cn; cesyyy@mail.sysu.edu.cn

‡ These authors contributed equally to this work.



Fig. S1. XRD pattern of 160-MoS<sub>2</sub>.



Fig. S2. Raman spectra of 200-MoS<sub>2</sub>.



Fig. S3. (a)  $MoS_2$  adsorption isotherms at different temperatures, pore volume-pore size distribution curve of (b) 220-MoS<sub>2</sub>, (c) 200-MoS<sub>2</sub>, (d) 180-MoS<sub>2</sub>.



Fig. S4. TEM images of (a) 220-MoS<sub>2</sub>, (b) 200-MoS<sub>2</sub>, (c) 180-MoS<sub>2</sub>, (d) 160-MoS<sub>2</sub>.





Fig. S5. Full range XPS spectra of (a) 220-MoS<sub>2</sub>, (b) 200-MoS<sub>2</sub>, (c) 180-MoS<sub>2</sub>.



Fig. S6. (a) CV curves of 220-MoS<sub>2</sub> at different scan rates, (b) CV curves of 180- $MoS_2$  at different scan rates.



Fig. S7. (a) CV curves of 1 mV s<sup>-1</sup> at different temperature, (b) CV curves of 5 mV s<sup>-1</sup> at different temperature.

At the same scan rates, 200-MoS<sub>2</sub> has a higher redox peak. The CV curve shape of 200-MoS<sub>2</sub> at different scanning speeds is similar, indicating that it has excellent cycle stability. By contrast, the large difference in the shape of the CV curve of 180-MoS<sub>2</sub> at different scanning speeds indicates that its stability is slightly worse.



Fig. S8. (a) Cycle performance of 200-MoS<sub>2</sub> at low current density (0.5 A  $g^{-1}$ ), (b) charge/discharge curves of 200-MoS<sub>2</sub> at low current density.



Fig. S9. 200-MoS<sub>2</sub> capacitive-controlled contribution calculation.



Fig. S10. XRD pattern of 200-MoS $_2$  electrode before and after cycling.

| Table S1. data of sp | ecific surface area |
|----------------------|---------------------|
|----------------------|---------------------|

| Sample                          | 220-MoS <sub>2</sub> | 200-MoS <sub>2</sub> | 180-MoS <sub>2</sub> |
|---------------------------------|----------------------|----------------------|----------------------|
| Specific surface area $(m^2/g)$ | 15.23                | 14.33                | 6.93                 |

| Atomic (%) | O 1s | S 2p  | Mo 3d | N 1s | S/Mo |
|------------|------|-------|-------|------|------|
| 220        | 5.54 | 21.66 | 8.05  | 2.5  | 2.69 |
| 200        | 7.87 | 25.59 | 10.37 | 2.07 | 2.47 |
| 180        | 7.11 | 18.69 | 6.6   | 2.23 | 2.83 |

Table S2. Atomic percentages of  $MoS_2$  by XPS measurement.

|                      | energy density (Wh kg <sup>-1</sup> ) |                     |                     | power density (W kg <sup>-1</sup> ) |          |                     |                     |                     |
|----------------------|---------------------------------------|---------------------|---------------------|-------------------------------------|----------|---------------------|---------------------|---------------------|
|                      | 0.5 A g-                              | 1 A g <sup>-1</sup> | 2 A g <sup>-1</sup> | 5 A g <sup>-1</sup>                 | 0.5 A g- | 1 A g <sup>-1</sup> | 2 A g <sup>-1</sup> | 5 A g <sup>-1</sup> |
|                      | 1                                     |                     |                     |                                     | 1        |                     |                     |                     |
| 180-MoS <sub>2</sub> | 74.93                                 | 60.41               | 51.74               | 41.75                               | 325.47   | 639.29              | 1265.68             | 3088.77             |
| 200-MoS <sub>2</sub> | 100.32                                | 87.07               | 77.99               | 66.36                               | 331.99   | 674.81              | 1309.02             | 3257.61             |
| 220-MoS <sub>2</sub> | 65.70                                 | 56.13               | 47.3                | 37.14                               | 348.05   | 683.32              | 1332.64             | 3261.62             |

Table S3. Energy density and power density of  $MoS_2$  at different temperatures.

Table S4. The fitting values of impedance parameters of  $MoS_2$  at different temperatures.

| Sample               | $R_1/\Omega$ | $R_2/\Omega$ | $R_3/\Omega$ |
|----------------------|--------------|--------------|--------------|
| 220-MoS <sub>2</sub> | 5.124        | 4.753        | 411.5        |
| 200-MoS <sub>2</sub> | 4.454        | 44.99        | 337.9        |
| 180-MoS <sub>2</sub> | 3.829        | 64.06        | 437.1        |

Table S5. 200-MoS<sub>2</sub> capacitive-controlled contribution calculation results.

|              | 1 mV s <sup>-1</sup> | 2 mV s <sup>-1</sup> | 3 mV s <sup>-1</sup> | 4 mV s <sup>-1</sup> | 5 mV s <sup>-1</sup> |
|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Experiment   | 0.000543075          | 0.00106638           | 0.00137118           | 0.00175627           | 0.0021075            |
| Capacitive   | 0.000306563          | 0.000613125          | 0.000919688          | 0.00122625           | 0.0015328            |
| Contribution | 56.4%                | 57.5%                | 67.1%                | 69.8%                | 72.7%                |

Table S6. Comparison of the Zn ion storage performance of  $MoS_2$  (in this work) and other recently reported Zn-ion battery cathodes.

| Cathode material   | Electrolyte                                           | Specific capacity         | Current density       | Reference |
|--------------------|-------------------------------------------------------|---------------------------|-----------------------|-----------|
| MoS <sub>2</sub>   | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 155 mA h g <sup>-1</sup>  | 0.5 A g <sup>-1</sup> | This work |
| $Mo_6S_8$          | 1 M ZnSO <sub>4</sub>                                 | $60 \text{ mA h g}^{-1}$  | 60 mA g <sup>-1</sup> | 1         |
| $MoS_2$            | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 134 mA h g <sup>-1</sup>  | 0.5 A g <sup>-1</sup> | 2         |
| MoS <sub>2-X</sub> | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 88.6 mA h g <sup>-1</sup> | 1 A g <sup>-1</sup>   | 3         |
| $WS_2$             | 2 M ZnSO <sub>4</sub>                                 | 22 mA h g <sup>-1</sup>   | 50 mA g <sup>-1</sup> | 4         |

| $VS_2$                                           | 1 M ZnSO <sub>4</sub>                                 | 190.3 mA h g <sup>-1</sup>    | 0.05 A g <sup>-1</sup>  | 5  |
|--------------------------------------------------|-------------------------------------------------------|-------------------------------|-------------------------|----|
| VS <sub>2</sub> flake                            | 1 M ZnSO <sub>4</sub>                                 | 125 mA h g <sup>-1</sup>      | 200 mA g <sup>-1</sup>  | 6  |
| ZnHCF                                            | 1 M ZnSO <sub>4</sub>                                 | 52.5 mA h g <sup>-1</sup>     | 300 mA g <sup>-1</sup>  | 7  |
| CuHCF                                            | 20 mM ZnSO <sub>4</sub>                               | $\sim 50 \text{ mA h g}^{-1}$ | 60 mA g <sup>-1</sup>   | 8  |
| $\alpha$ -MnO <sub>2</sub>                       | 1 M ZnSO <sub>4</sub>                                 | 210 mA h g <sup>-1</sup>      | 21 mA g <sup>-1</sup>   | 9  |
| ZnMn <sub>2</sub> O <sub>4</sub>                 | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 150 mA h g <sup>-1</sup>      | 0.5 A g <sup>-1</sup>   | 10 |
| Quinones                                         | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 120 mA h g <sup>-1</sup>      | 500 mA g <sup>-1</sup>  | 11 |
| Polyaniline                                      | 1 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | 82 mA h g <sup>-1</sup>       | 5 A g <sup>-1</sup>     | 12 |
| LiV <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> | $4 \text{ mol } kg^{-1} \text{ Zn}(CF_3SO_3)_2$       | ${\sim}110~mA~h~g^{-1}$       | 1500 mA g <sup>-1</sup> | 13 |

## References

1 Cheng, Yingwen, Luo, Langli, Zhong, Li, Chen, Junzheng and Li, Bin, Acs Applied Materials & Interfaces 2016, 8, 13673.

2 A. JL, B.PX, A. WP et al., Chemical Engineering Journal 2020, 389, 124405.

3 A. Wx et al., Energy Storage Materials 2019, 16, 527-534.

4 W. Liu, J. Hao, C. Xu, M. Jian, F. Kang, Chemical Communications, 2017, 53, 6872-6874.

5 P. He et al., Advanced Energy Materials 2017, 7, 1601920.

6 Z. Wang et al., Nano Energy 2019,56, 92-99.

7 L. Zhang, L. Chen, X. Zhou, Z. Liu, Advanced Energy Materials, 2015, 5, 1400930.

8 R. Trócoli, F. Lamantia, ChemSusChem, 2015, 8, 481-5.

9 B. Lee, S. Y. Chong, H. R. Lee, K. Y. Chung, H. O. Si, Scientific Reports, 2014, 4, 6066.

10 Ning et al., Am. Chem. Soc. 2016, 138, 12894-12901.

11 Q. Zhao, W. Huang, Z. Luo, L. Liu, L. Yong, Science Advances, 2018, 4, eaao1761.

12 F. Wan et al., Advanced Functional Materials, 2018, 28, 1804975.

13 F. Wang et al., Energy & Environmental Science, 2018, 11, 3168-3175.