Supplementary Information

Determination of sitagliptin in human plasma using a smart electrochemical sensor based on electroactive molecularly imprinted nanoparticles

Isma Haq,^a Kaseb Alanazi,^b Joanna Czulak,^c Sabrina Di Masi,^d Elena Piletska,^b Adnan Mujahid,^a Tajamal Hussain,^a Sergey A. Piletsky,^b Alvaro Garcia-Cruz ^{b*}

^a Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.

^{b.} Department of Chemistry, University of Leicester, University Rd, LE1 7RH, Leicester (UK).

^c MIP Diagnostics Ltd., Colworth Science Park, Sharnbrook, MK44 1LQ, Bedford, UK

^d University of Salento, Department of Biological and Environmental Sciences and Technologies, Via Monteroni, Lecce, IT 73100, Italy.

1. Dansyl Chloride (DNSCL) Test

Silanisation of glass beads was confirmed by dansyl chloride test. To perform this test 10 mg of DNSCL was dissolve in 1 mL of ethanol and 0.5 g of silanized glass beads was immersed in this solution for 1 hour in dark. Similarly 0.5 g of non-silanized glass beads was immersed in DNSCL solution for 1 hour in dark. After 1 hour washed these glass beads with ethanol/acetone to remove dansyl chloride and checked its fluorescence under UV lamp. Non-silanised glass beads were non-fluorescent while silanized glass beads were fluorescent in UV lamp, which confirmed the successive silanization of glass beads as shown in the Figure S2.

Figure S1. The presence of amino groups on the solid phase was confirmed using the DNSCL test.

2. Materials and Methods

Monomer	Function	nanoMIP-1	nanoMIP-2
Iniferter	Initiator, transfer	0.75 g (3.14 mmol)	0.75 g (3.14 mmol)
	agent, and terminator		
PETMP	Chain transfer agent	0.18 g (0.37 mmol)	0.18 g (0.37 mmol)
FcMMA	Electroactive	0.17 g (27.1 mmol)	0.17 g (27.1 mmol)
FCIVIIVIA	monomer, redox label		
NIPAM	Thermo-responsive	0.02 g (0.17 mmol)	0.02 g (0.17 mmol)
	properties		
EGMP	Functional monomer	7.03 g (33.47 mmol)	7.03 g (33.47 mmol)
TFMAA	Functional monomer	-	4.122 g (29.43 mmol)
MAA	Functional monomer	1.44 g (16.35 mmol)	-
NAPMA	Functional monomer	0.02 g (0.17 mmol)	0.01 g (0.085 mmol)
	Cross-linker/	2.52 g (16.35 mmol)	2.52 g (16.35 mmol)
MBA	Functional monomer		
EGDMA	Cross-linker	3.24 g (16.35 mmol)	3.24 g (16.35 mmol)
TRIM	Cross-linker	3.24 g (9.57 mmol)	3.24 g (9.57 mmol)

 Table S1. Different composition of polymerization mixture.

3. Result and Discussion

Table S2. Binding energy for Sitagliptin with the monomer database

Monomers	Binding Score, kJmol ⁻¹
TFMAA	-37.60
MBA	-31.84
EGMP	-29.32
MAA	-28.18
NAPMA	-26.73

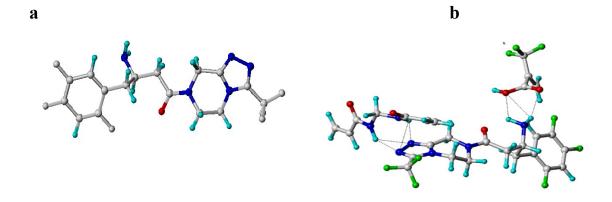


Figure S2. Minimized structure of (a) sitagliptin and (b) MBA-sitagliptin-TFMAA complex.

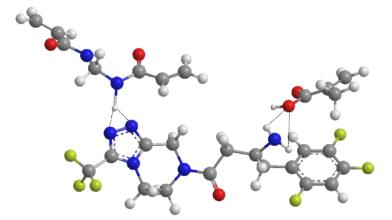
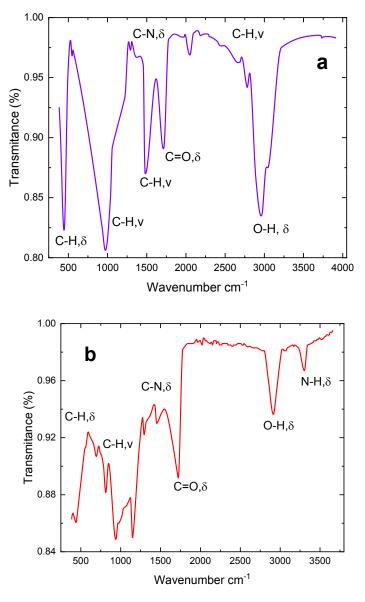
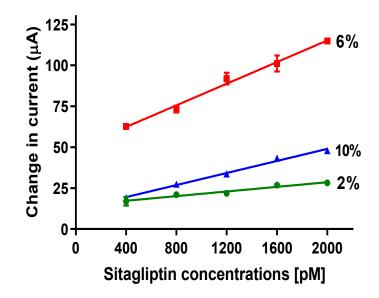
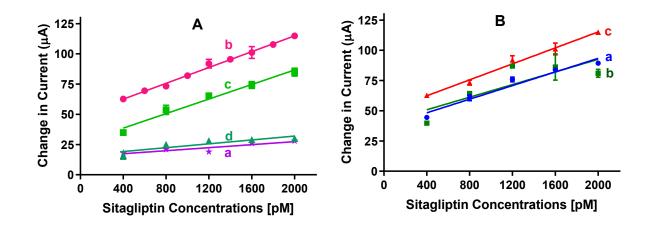


Figure S3. (a) Minimized structure of MBA-Sitagliptin-MAA complex


Figure S4. FTIR spectra of (a) nanoMIP 1 and (b) nanoMIP 2.

Tuble bet The bize measurements of nanopiviti 5, (if 5)	Table S3.	The s	ize measurements	of nanop	oMIPs,	(n=5)
---	-----------	-------	------------------	----------	--------	-------

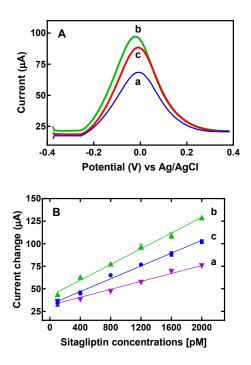
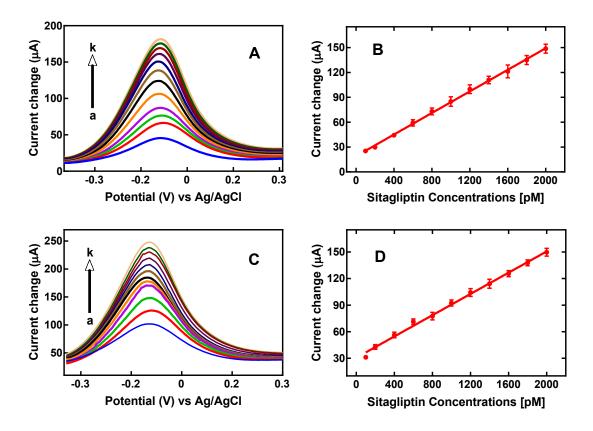
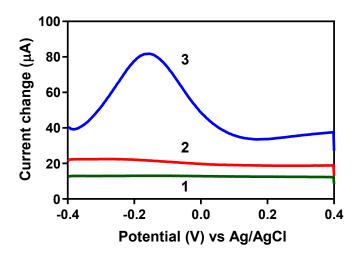
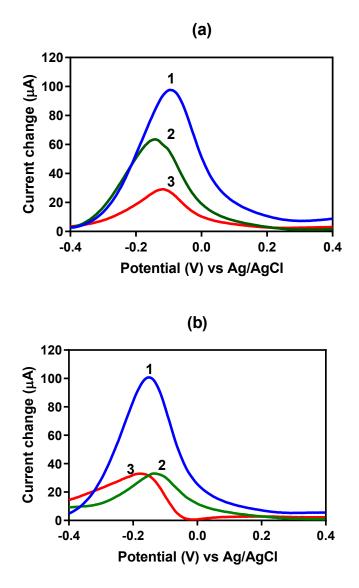

	DLS Analysis TEM Analysi			DLS Analysis		TEM Analysis
nanoMIP	Diameter (nm)	Polydispersity index (PDI)	Diameter (nm)			
MIP-1	233 ± 5.8	0.32 ± 0.06	15 ± 4.5			
MIP-2	193 ± 9.5	0.36 ± 0.05	21 ± 3.2			

Figure S5. The effect of APTES concentration (2%, 6% and 10%) on SPPE. Experiments were performed in a concentration range from 400 to 2000 pM in PBS and measurement were repeated 3 times.


Figure S6. (A) The sensors response to Sitagliptin prepared with nanoMIP concentration at (a) 0.3, (b) 0.5, (c) 0.7 and (d) 1 mg mL⁻¹ on SPPE. (B) Sensor response to Sitagliptin prepared at different immobilization times of nanoMIP (a) 2, (b) 4 and (c) 20 h on SPPE. Experiments were performed in a concentration range from 400 to 2000 pM in PBS and measurement were repeated 3 times.


Figure S7. NanoMIP sensor response for different FcMMA monomer concentration at (a) 15, (b) 20, and (c) 25 molar %. Plot A, sensor response to 1200 pM of Sitagliptin in 5 mM PBS buffer and Plot B, calibration curve from 100 to 2000 pM Sitagliptin in 5 mM PBS buffer.

Parameter	Level	Sensitivity	Linearity
		$(nA pM^{-1})$	(R^2)
nanoMIP	0.3	6.2	0.810
Concentration (mg mL ⁻¹)	0.5	32.7	0.993
	0.7	30.0	0.977
	1	8	0.793
nanoMIP immobilization	2	28.2	0.954
time (h)	4	26.1	0.679
	20	33	0.991
APTES Concentration (%)	2	7.1	0.960
	6	33	0.990
	10	18.4	0.990
FcMMA (molar %)	15	35.5	0.996
	20	43.5	0.998
	25	22	0.989


Table S4. Performance of the nanoMIP sensor

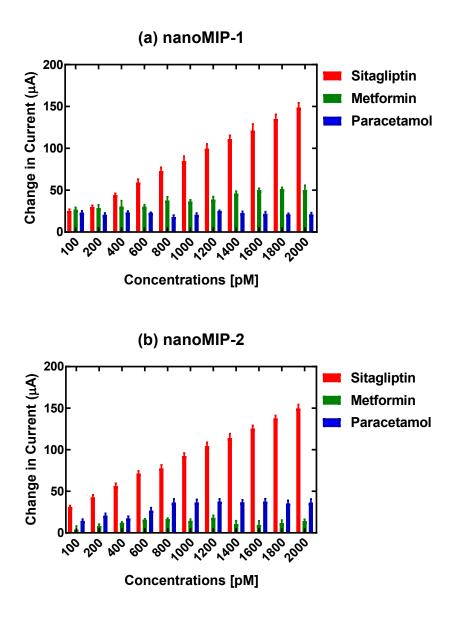

Figure S8. NanoMIP-1 sensor response (A), and the corresponding (B) calibration curve. NanoMIP-2 sensor response (C), and the resultant calibration curve (D). Experiments (n=3) were performed in a sitagliptin concentration at (a) 0, (b) 100, (c) 400, (d) 600, (e) 800, and (f) 1000, (g) 1200, (h) 1400, (i) 1600, (j) 1800 and (k) 2000 pM in PBS.

Figure S9. DPV response to (1) 5 mM PBS buffer and (2) 2.45 mM Sitagliptin on bare electrode, SPPE. (3) NanoMIP modified SPPE in 5 mM PBS buffer.

Figure S10. The DPV response recorded for (a) nanoMIP-1 and (b) nanoMIP-2 to (1) Sitagliptin, (2) Metformin, (3) Paracetamol. The drugs were tested at 1200pM in 5 mM PBS.

Figure S11. A comparison of the cross reactivity response between (a) nanoMIP-1 and (b) nanoMIP-2 towards metformin and paracetamol solutions under similar optimum conditions.

Sitagliptin Metformin Para	Sitagliptin	or response	Sens	
65 ± 1 14 ± 1 -0.	65 ± 1	Slope (nA pM ⁻¹)		
0.998 0.857 0	0.998	Linearity (R ²)	nanoMIP-1	
100% 21.5% 0	100%	Sensor response		
60 ± 1 2.1 ± 2 11	60 ± 1	Slope (nA pM ⁻¹)		
0.996 0.117 0	0.996	Linearity (R ²)	nanoMIP-2	
100% 3.5% 19	100%	Sensor response		
100% 21.5% 0 60 ± 1 2.1 ± 2 11 0.996 0.117 0	100% 60 ± 1 0.996	Sensor response Slope (nA pM ⁻¹) Linearity (R ²)	nanoMIP-1 nanoMIP-2	

Table S5. Cross reactivity of fabricated nanoMIP sensors.

nanoMIP-2 sensor

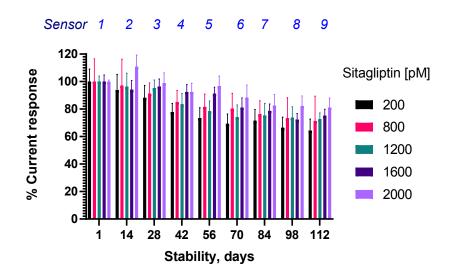


Figure S12. Percentage of the current response against days of storage of nanoMIP-2 sensor.