Supporting Information

Type-II Lateral SnSe/GeTe Heterostructure for Solar Photovoltaic Applications

with High Efficiency

Qianyong Zhuang, Jin Li*, Chaoyu He, Tao Ouyang, Chunxiao Zhang, Chao Tang*, Jianxin Zhong

¹ Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105, People's Republic of China

² School of Physics and Optoelectronics, Xiangtan University, Hunan 411105,
People's Republic of China

E-mail: lijin@xtu.edu.cn; tang_chao@xtu.edu.cn

Fig. S1 The band structure and projected density of states for monolayer (a) SnSe (b) GeTe.

Table S1 Equilibrium 2D Lattice Parameters and bandgaps calculated by PBE andHSE06 methods.

	This work				Ref.[9]			
	a(Å)	b(Å)	Eg-pbe(eV)	Eg-нse(eV)	a(Å)	b(Å)	Eg-pbe(eV)	Eg-HSE(eV)
SnSe	4.29	4.39	0.93	1.41	4.28	4.43	1.00	1.44
GeTe	4.24	4.37	0.88	1.17	4.23	4.47	0.95	1.24

Fig. S2 Heat of formation (HF) of heterostructures with m + n = 16. The red triangle represents A-(SnSe)_m/(GeTe)_n and blue circle represents Z-(SnSe)_m/(GeTe)_n.

Fig. S3 The electron density difference of (a) $A-(SnSe)_5/(GeTe)_{11}$, (b) $A-(SnSe)_{11}/(GeTe)_5$, (c) $Z-(SnSe)_5/(GeTe)_{11}$ and (d) $Z-(SnSe)_{11}/(GeTe)_5$. The left and right sides are the side view and top view near the interface, respectively.

Fig. S4 Band structures of heterostructures with $m(n)=4\sim8$ obtained by HSE06 method.

Fig. S5. The local density of states in the center of (a) $A-(SnSe)_m/(GeTe)_n$ and (b) $Z-(SnSe)_m/(GeTe)_n$.

SnSe/GeTe	Jabs (m/	A/cm²)	PCE (%)	PCE (%)		
(m/n)	armchair	zigzag	armchair zig	zag		
1/15	5.12	4.84	21.22 21	.27		
2/14	5.10	4.75	20.58 20	.53		
3/13	5.04	4.51	20.57 21	.20		
4/12	4.97	4.61	20.54 20	.22		
5/11	4.79	4.54	20.56 19	.41		
6/10	4.83	4.47	20.57 19	.80		
7/9	4.63	4.40	20.81 19	.85		
8/8	4.55	4.19	20.85 20	.14		
9/7	4.52	4.26	20.85 19	.96		
10/6	4.46	4.13	21.17 20	.95		
11/5	4.33	4.04	21.17 21	.30		
12/4	4.21	3.93	21.22 21	.48		
13/3	4.10	3.84	21.12 21	.56		
14/2	3.98	3.54	21.38 typ	e I		
15/1	3.85	3.56	21.41 typ	e I		

Table S2 The J_{abs} and PCE values of $(SnSe)_m/(GeTe)_n$.