Supporting Information

Versatile precursor dependent copper sulfide nanoparticles as multifunctional catalyst for photocatalytic removal of water pollutants and synthesis of aromatic aldehydes and NH-triazoles

Soniya Agarwal, Parmita Phukan, Diganta Sarma* and Kalyanjyoti Deori*

Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.

Table of Contents

1.	FT-IR plot of CS2 photocatalyst	2
2.	MB degradation and Cr(VI) reduction conducted under dark condition	2
3.	Band gap structures of CuS (CS2) and CuS-CuS ₂ (CS20) photocatalysts	3
4.	MB degradation and Cr(VI) reduction conducted under 250W light	3
5.	XRD and TEM images of recovered catalysts	4
6.	Optimization table for selective oxidation of benzy	l alcohol to
	benzaldehyde	4
7.	Substrate study of various substituted benzyl alcohols to correspon	onding aldehydes
	according to the optimised condition obtained from Table S1	5
8.	Optimization table for catalyst loading in the synthesis of 4	4-Aryl-NH-1,2,3-
	Triazoles	6
9.	Optimization of reaction conditions in the synthesis of 4	4-Aryl-NH-1,2,3-
	Triazoles	6-7
10.	Analytical data of representative compounds	8-10
11.	Copies of ¹ H NMR and ¹³ C NMR Spectra of the compounds	11-21

Fig. S1 (a) FT-IR spectrum plot of as synthesized CS2 nanoparticles.

Fig. S2 Time-dependent optical absorption spectra for degradation of (a) Methylene blue (MB) and (b) Cr(VI) for blank and after stirring with photocatalyst for 1 hour under dark condition.

Fig. S3 Band gap structures of CuS (CS2) and CuS-CuS₂ (CS20) photocatalysts.

Fig. S4 (a) MB degradation and (b) Cr(VI) reduction conducted with 250 watts high pressure mercury vapour visible lamp (HPMVL).

Fig. S5 (a) Powder XRD pattern of recovered CS2 sample after durability test for MB degradation and Cr(VI) reduction reactions along with bulk XRD pattern of covellite CuS. (b) XRD pattern of recovered CS20 sample after recyclability test (5th photocatalytic cycle) for benzyl alcohol oxidation reaction. TEM image of recovered photocatalyst (c) CS2 and (d) CS20.

Table S1: Optimization of reaction	conditions for	photocatalytic	selective	oxidation o	f
benzyl alcohol to benzaldehyde.					

		^{OH} <u>Catalyst , O</u> solvent, hv	<u>A,</u>	он
Entry	Oxidant	Solvent	Catalyst	Conversion (%)
1	H_2O_2	ACN	-	-
2	H_2O_2	ACN	CS2	57
3	H_2O_2	ACN	CS20	79
4	O ₂	ACN	CS20	-
5	TBHP	ACN	CS20	88
6	TBHP	H ₂ O	CS20	62
7 ^a	TBHP	ACN	CS20	55
8	ТВНР	ACN	CS20	96

Reaction conditions: All reactions were performed with oxidant = 0.5 mL, catalyst = 20 mg and solvent = 5 mL in the presence of visible light. ^aIn the absence of visible light.

 Table S2: Substrate study of various substituted benzyl alcohols to corresponding aldehydes according to the optimised condition obtained from Table S1.

Reaction conditions: All reactions were performed with TBHP = 0.5 mL, CS20 = 20 mg and ACN = 5 mL in the presence of visible light.

Table S3: Optimization of catalyst loading in the synthesis of 4-Aryl-NH-1,2,3-Triazoles^a

Entry	Catalyst (mg)	Time (h)	Yield ^b (%)
1	20	1	98 %
2	15	1	98 %
3	10	1	98 %
4	5	3	76 %
5	-	3	24 %
6	10	45 mins	85 %
		30 mins	62 %

^aReaction conditions: 4-bromobenzaldehyde (1 mmol), nitromethane (2mmol), NaN₃

(3 mmol), catalyst, solvent (PEG-400) (3 mL), in air.

^bIsolated yield.

Table S4: Optimization of reaction conditionsin the synthesis of 4-Aryl-NH-1,2,3-Triazoles^a

Entry	Solvent	Temperature	Time (h)	Yield ^b (%)
1	H ₂ O	100°C	1	45 %
2	DMSO	100°C	1	70 %
3	DCM	100°C	1	68 %
4	Toluene	100°C	1	55 %

5	EG	100°C	1	72 %
6	DMF	100°C	1	65 %
7	PEG-400	100°C	1	98 %
8	PEG-400	70° C	1	72 %
9	PEG-400	RT	24	Trace

^aReaction conditions: 4-bromobenzaldehyde (1 mmol), nitromethane (2 mmol), NaN₃

(3 mmol), and catalyst (10 mg), solvent (3 mL), in air.

^bIsolated yield.

Analytical data of representative compounds:

4-nitrobenzaldehyde: light yellow crystalline powder, m.p.= 104-106°C,¹H NMR (500 MHz, CDCl₃) δ 10.16(s, 1H),8.38 (d, *J* = 8.6 Hz, 2H), 8.08 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃): δ =190.28, 150.98, 139.95, 130.38, 124.17.

4-(4-bromophenyl)-1H-1,2,3-triazole: white solid, m.p.= 177-180°C, ¹H NMR (500 MHz, DMSO) δ 9.15 (s, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.78 (s, 1H), 7.66 (d, *J* = 8.5 Hz, 2H).¹³C NMR (126 MHz, DMSO) δ 141.08, 132.23, 131.01, 130.80, 129.13, 127.87.

(4-(4-fluorophenyl)-1H-1,2,3-triazole): Yellow solid; mp 148-150°C, ¹H NMR (400 MHz, DMSO-d₆) δ 9.08 (s, 1H), 8.25 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.9 Hz, 2H).

(4-(1H-1,2,3-triazol-4-yl)benzonitrile): Yellow solid; mp 170-172 °C, ¹H NMR (400 MHz, DMSO-d₆) δ 8.74 (s, 1H), 8.39 (s, 1H), 8.03 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 7.6 Hz, 2H).

(4-(4-chlorophenyl)-1H-1,2,3-triazole): Yellow solid; mp 160-162°C, ¹H NMR (400 MHz, DMSO-d₆): δ 9.11 (s, 1H), 8.24 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 7.3 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 157.68, 138.36, 130.48, 129.31, 128.71, 127.58.

(2-(1H-1,2,3-triazol-4-yl)phenol): Yellow solid; mp 154-156°C, ¹H NMR (500 MHz, DMSO-d₆) δ 14.92 (s, 1H), 8.19 (s, 1H), 7.82 (s, 1H), 7.20 – 6.89 (m, 4H).¹³C NMR (126 MHz, DMSO) δ 154.43, 143.94, 133.19, 129.46, 129.00, 127.84, 119.68, 116.50.

(4-(3-fluorophenyl)-1H-1,2,3-triazole): Yellow solid, ¹H NMR (500 MHz, DMSO) δ 11.46 (s, 1H), 8.32 (s, 1H), 7.91 – 7.56 (m, 5H).¹³C NMR (126 MHz, DMSO) δ 158.46, 146.93, 131.66, 129.87, 128.37, 125.30, 116.54.

(4-(2,4-dichlorophenyl)-1H-1,2,3-triazole): Yellow solid; mp 168-170°C: ¹H NMR (400 MHz, DMSO- d₆) δ 9.03 (s, 1H), 8.27 (d, J = 1.3 Hz, 1H), 7.71 (s, 1H), 7.55 (s, 1H), 7.43 (d, J = 13.6 Hz, 1H).¹³C NMR (126 MHz, DMSO) δ 143.30, 133.75, 131.95, 130.03, 128.14, 127.75.

(4-(thiophen-2-yl)-1H-1,2,3-triazole): Yellow solid, mp 86-88°C: ¹H NMR (400 MHz,) δ 9.19 (s), 8.11 (s), 7.13 – 7.05 (m), 6.91 (t, J = 5.1 Hz). ¹³C NMR (101 MHz,) δ 142.20, 129.11, 128.45, 127.39, 126.44, 125.88.

(4-(furan-2-yl)-1H-1,2,3-triazole): Yellow solid; mp 62-64°C: ¹H NMR (600 MHz, DMSOd₆) δ 15.30 (s, 1H), 9.08 (s, 1H), 8.08 (d, J = 52.2 Hz, 1H), 7.34 (dd, J = 36.0, 28.3 Hz, 2H). ¹³C NMR (151 MHz, DMSO) δ 158.51, 142.53, 116.63, 114.38, 63.93, 38.13.

(5-methyl-4-phenyl-1H-1,2,3-triazole): Yellow solid; mp 124-126 °C; ¹H NMR (500 MHz, DMSO) δ 14.36 (s, 1H), 7.94 (d, J = 1.9 Hz, 2H), 7.69 – 7.57 (m, 2H), 7.54 – 7.45 (m, 1H), 2.52(s, 3H).¹³C NMR (126 MHz, DMSO) δ 167.68, 133.22, 131.07, 129.60, 128.92, 126.02, 11.21.

Fig. S6: ¹H NMR spectrum of 4-nitrobenzaldehyde.

Fig. S7 ¹³C NMR spectrum of 4-nitrobenzaldehyde.

Fig. S8 ¹H NMR spectrum of 4-(4-bromophenyl)-1*H*-1,2,3-triazole

Fig. S9 ¹³C NMR spectrum of 4-(4-bromophenyl)-1*H*-1,2,3-triazole

Fig. S10 ¹H NMR spectrum of 4-(4-fluorophenyl)-1*H*-1,2,3-triazole

Fig. S11 ¹H NMR spectrum of 4-(1*H*-1,2,3-triazol-4-yl)benzonitrile

Fig. S12 ¹H NMR of (4-(4-chlorophenyl)-1*H*-1, 2, 3-triazole)

Fig. S13 ¹³C NMR of (4-(4-chlorophenyl)-1*H*-1, 2, 3-triazole)

Fig. S14 ¹H NMR of 2-(1*H*-1,2,3-triazol-4-yl)phenol

Fig. S15 ¹³C NMR of 2-(1*H*-1,2,3-triazol-4-yl)phenol

Fig. S16 ¹H NMR of 4-(3-fluorophenyl)-1*H*-1,2,3-triazole

Fig. S17 ¹³C NMR of 4-(3-fluorophenyl)-1*H*-1,2,3-triazole

Fig. S18 ¹H NMR spectra of (4-(2,4-dichlorophenyl)-1*H*-1, 2, 3-triazole)

Fig. S19 ¹³C NMR spectra of (4-(2,4-dichlorophenyl)-1*H*-1, 2, 3-triazole)

Fig. S20 ¹H NMR spectra of (4-(thiophen-2-yl)-1*H*-1,2,3-triazole

Fig. S21 ¹³C NMR spectra of (4-(thiophen-2-yl)-1*H*-1,2,3-triazole

Fig. S22 ¹H NMR spectra of (4-(furan-2-yl)-1*H*-1,2,3-triazole)

Fig. S23 ¹³C NMR spectra of (4-(furan-2-yl)-1*H*-1, 2, 3-triazole)

Fig. S24 ¹H NMR spectra of (5-methyl-4-phenyl-1*H*-1, 2, 3-triazole)

Fig. S25¹³C NMR spectra of (5-methyl-4-phenyl-1*H*-1, 2, 3-triazole)