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Methods
Molecular dynamics
We created a nine-layer slab of calcite of dimensions 1.995 ×
1.650 × 2.710 nm3, with the (101̄4) surface facing the z direction
of the simulation box and using the crystallography data from1.
The mineral is periodic in x and y directions. The box length in z
is 7.430 nm, resulting in a spacing between slabs of 4.720 nm in
which 530 water molecules were added. For aragonite, we stud-
ied two structures: (010) and (001), creating the slabs from the
crystallography data from2. The (010) surface consisted of a slab
of dimensions 2.297 × 1.984 × 3.115 nm3, with the (010) plane
facing the z direction of the simulation box. The total box length
in z is 7.599 nm, with the space between slabs being filled with
800 water molecules. The (001) surface consisted of a slab of
dimensions 3.008 × 2.403 × 2.366 nm3, with the (001) facing
the z direction of the simulation box. The total box length in z
is 6.949 nm, with the space between slabs being filled with 1200
water molecules. The vaterite surface was built by using the crys-
tallography data from3 with space group P3221. We cleaved the
structure at the 010 plane, creating a slab with dimensions 2.516
× 2.154 × 2.608 nm3. The total box length in z is 7.909 nm, with
the space between slabs filled by a 1000 water molecules.

For each system, we performed a series of equilibration steps:
100 ps of NVE (constant number of particles, volume, and energy)
500 ps of NVT (constant number of particles, volume, tempera-
ture) at 300 K, 1 ns of NPT (constant number of particles, pres-
sure, and temperature) at 300 K and 1 atm of pressure coupling
along the z direction; then finally, a production run of 2 ns on
NVT, at 300K. The equilibration time is suitable to equilibrate the
surface ions and the hydration layers. Moreover, the run time of
the production run is long enough to give averaged densities that
can be captured by the ML approach. We utilized Nose-Hoover
thermostats and barostats with dampening factors of 0.1 ps to
control temperature, and of 1 ps to control pressure. The aver-
aged density of water oxygen from the production run is used
to denote the water density over the surface. This approach is
consistent with the previous works4–6. Particle-particle-particle-
mesh method7 was used to calculate the long-range electrostatic
interactions.

Training set
For calcite, we started with a surface of 4×4 CaCO3 units along x
and y directions, cif. fig S1, to create the surface defects. The den-
sities of Csur f ace, Osur f ace, Casur f ace, and Owater were derived dur-
ing the production run and discretized as 3D-matrix histograms

a Department of Applied Physics, Aalto University, Finland
b WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-
machi, Kanazawa 920-1192, Japan

Fig. S1 Schematic of the process of taking training data from the calcite
database. The calcite slab, with marked unit cell, is shown from top, with
the box of cropped density. It is ensured that the surface is shared in the
subsequent box locations. The atoms of calcium, oxygen, and carbon
are represented by blue, red, and brown spheres. (The atomic structure
is imaged using VESTA8)

(voxel size of 0.2 Å). We smeared the densities with a gaussian to
extend the effect of the point sized atoms — the Csur f ace, Osur f ace,
and Casur f ace — and to reduce the statistical-sampling noises in
the water density — the Owater — from the trajectory. Next, we
split this data-set into volumes of 10× 10× 20 Å3, in a way that
each block contained the top two layers of the surface and the
interfacial Owater density, as seen in Fig. S1. We chose this vol-
ume size because it minimises GPU memory required during the
training, while suitably covering the effect of defects on the hy-
dration layer density. This results in a pre-processed data size
of 26,784; consisting of training, validation, and test datasets of
sizes 19,280, 4,824, and 2,680, respectively.

Similar to the calcite case, we generated a dataset of 1024
cases comprising defects on the surface of aragonite. Combin-
ing it with the preprocessed calcite data, we obtained a final
dataset with 51,336 structures; consisting of training, validation,
and test datasets of sizes 39,960, 9,240, and 5,136, respectively.
We trained the ML model with this combined dataset to estimate
its overfitting and to determine its generality.

Machine learning
The U-Net comprises 3D convolution neural networks chained
like the encoder-decoder models9. Our network had three scale
pooling until the encoded latent space and skip connections,
which connect the layers in the encoder to the ones in the de-
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Fig. S2 Schematics of the attention U-Net. The simple U-net has the same encoder-decoder architecture with skip-connections, but without the
attention mechanism. The network starts with the input densities as three channels comprising C, O, and Ca from the surface. Through a series of
convolutions and activation filters, along with (attention mapped) skip connections, the output is calculated as one channel of water density.

coder, as seen in fig S2. All the 3D convolution layers, denoted
as φ(xl ,w), with xl as input at layer l and w as weights, are fol-
lowed by a leaky ReLU activation layer10 α(φ(xi,w)) to induce
non-linearity in the model, cif. equation 1. The skip connections,
red lines in fig S2, concatenates the output of the layer prior to
pooling, during encoding, to the output of the layer up-scaled to
the same scale, during decoding. These update rules are as fol-
lows:

xl = αl(φl(xl−1,wl)) (1)
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where α ′l is the differential of the activation layer with input
xl . In equation 2 the xcat

n−1 is the concatenation of the output
after up-scaling and output prior to pooling. This allows for a
greater significance of the input over the deeper layers, in de-
coder, which mitigates the loss of the semantics from the input.
The equation 3 shows the gradient of the loss function L with

respect to the weights wl of the layer prior to pooling, using back-
propagation11. Back-propagation uses the chain rule of differen-
tiation to calculate this gradient in terms of the gradient at the
next layers; which is calculated in terms of the gradient in the
subsequent layers, until the loss value. These gradients are used
to update the weights during training. At the layer prior to pool-
ing, this gradient is expressed as a summation of the gradient at
the layer after the skip connection, and the gradient at the layer
after the pooling. This permits the shallower layers during en-
coding, to have a significant gradient during training from deeper
layers. Thus, less training is required to learn the semantics, due
to the skip connections.

We applied a soft self-attention mechanism12 in the attention
variant of the U-Net. The output of the lowest encoded latent-
space scale (up-scaled to skip value) is used as the key. This al-
lows for non-local semantic learning in the attention mechanism.
The skip value is also used as the query and, hence, the mecha-
nism is called self-attention. The linear transformations applied to
the query and the key are voided of spatial information, by using
1× 1× 1 kernel convolutions, thus keeping the network small12.
We derived the attention value using sigmoid activation. This at-
tention is multiplied element-wise to the skip connection, given
as:

xatt
i jk = Attention(xi jk,x

latent
i jk )xi jk (4)

During training, the weights are updated using ADADELTA
scheme13. The mean absolute error (MAE) — the L1 loss function
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Fig. S3 The errors during the training of the U-net and the attention
U-net over the calcite database. A step scheduler is used to control the
learning rate, and hence, the errors drops drastically at certain epochs.

— is used as the loss function to calculate the gradients for the
backward propagation. This is calculated between the predicted
and the simulated water densities, Θ(x) and y respectively, given
as:

L =
ni,n j ,nk

∑
i, j,k=0

|yi, j,k−Θ(x)i, j,k|
ni ∗n j ∗nk

(5)

We trained these models on a NVIDIA® Tesla® V100 GPU, with
a 6-core CPU for loading data from the storage.

Supplemental figures
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Fig. S4 Prediction of hydration layers, over a surface with Ca2+ vacancy, using the U-Net. (a) Comparison of 2D slices in simulated and predicted
water density at z heights corresponding to the peaks in the simulated data. The density (ρ) is scaled with the bulk water density (ρo) for the 2D
slices. (b) the mean water density in the 2D xz plane, (c) the 1D water density along the z direction. In the 2D data, the atoms C, O, and Ca, are
represented as circles of brown, blue, and red colour, respectively.
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2D slices in simulated and predicted water density at z heights corresponding to the peaks in the simulated data. The density (ρ) is scaled with the
bulk water density (ρo) for the 2D slices. (b) the mean water density in the 2D xz plane, (c) the 1D water density along the z direction.
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