Supporting Information

NIR Luminescence lifetime nanothermometry based on phonon assisted

Yb³⁺-Nd³⁺ energy transfer

K. Maciejewska¹, A. Bednarkiewicz¹, L. Marciniak¹

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna

2, 50-422 Wroclaw, Poland

Corresponding author: l.marciniak@intibs.pl

Keywords: luminescence thermometry, lifetimes, phonon assisted energy transfer, lanthanides, relative sensitivity, orthophosphates, nanocrystals

Figure S1. The representative TEM images of Nd_{0.5}Lu_{0.4}Yb_{0.1}PO₄ -a) Nd_{0.5}Y_{0.4}Yb_{0.1}PO₄ -b) Nd_{0.5}La_{0.4}Yb_{0.1}PO₄ - c) and Nd_{0.5}Gd_{0.4}Yb_{0.1}PO₄ -d).

Figure S2. The histograms of the nanoparticles diameter of $Nd_{0.5}Y_{0.4}Yb_{0.1}PO_4$ -a), $Nd_{0.5}Lu_{0.4}Yb_{0.1}PO_4$ -b) $Nd_{0.5}La_{0.4}Yb_{0.1}PO_4$ -c) and $Nd_{0.5}Gd_{0.4}Yb_{0.1}PO_4$ -d).

Figure S3. The τ_{avr} as a function of temperature for different concentration of Nd^{3+} ions

Figure S4. The emission spectra of $Nd_{0.5}Y_{0.4}Yb_{0.1}PO_4$ -a), $Nd_{0.5}Lu_{0.4}Yb_{0.1}PO_4$ -b), $Nd_{0.5}La_{0.4}Yb_{0.1}PO_4$ -c), $Nd_{0.5}Gd_{0.4}Yb_{0.1}PO_4$ -d) nanocrystals obtained upon λ_{exc} =808 nm at different temperatures.

Figure S5. The comparison of the integral emission intensity of Yb³⁺ ions (${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ electronic transition) measured at room temperature upon λ_{exc} =808 nm

Figure S6. The luminescence decay profiles of ${}^{2}F_{5/2}$ state of Yb³⁺ ions measured at different temperatures of Nd_{0.5}Y_{0.4}Yb_{0.1}PO₄ -a), Nd_{0.5}Lu_{0.4}Yb_{0.1}PO₄ -b), Nd_{0.5}La_{0.4}Yb_{0.1}PO₄ -c), Nd_{0.5}Gd_{0.4}Yb_{0.1}PO₄ -d) nanocrystals.

Figure S7. The τ_{avr} as a function of temperature with the fit using Miyakawa-Dexter for Nd_{0.5}Y_{0.4}Yb_{0.1}PO₄ -a), Nd_{0.5}La_{0.4}Yb_{0.1}PO₄ -b), Nd_{0.5}Lu_{0.4}Yb_{0.1}PO₄ -c), Nd_{0.5}Gd_{0.4}Yb_{0.1}PO₄ -d).

Figure S8. The τ_{avr} of the ${}^{2}F_{5/2}$ state measured at 123 K of the Yb³⁺ ions (a); and the S_{RMAX} (b) in the REPO₄:Nd³⁺,Yb³⁺ nanocrystals shown as a function of the average particle size.

Figure S9. The τ_{avr} measured for Nd_{0.5}Y_{0.4}Yb_{0.1}PO₄ nanocrystals at 123 K and 273 K for different emission wavelength (λ_{em}).

Figure S10. The comparison of the luminescence decay profile measured at 123 K for the $Nd_{0.5}Y_{0.4}Yb_{0.1}PO_4$ nanocrystals with different filling factor of pulse width modulation (PWM) λ_{exc} =808 nm, λ_{em} =980 nm.